
Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 20, No 2,1998 

3D ELASTIC MULTIMODALITY IMAGE REGISTRATION 
THROUGH A GENETIC ALGORITHM 

Jean-Michel Rouet, Jean- Jos6 Jacq and Christian Roux 

D6partement Image et Traitement de 1’Information 
Laboratoire de Traitement de 1’Information Mkdicale 

ENST Bretagne, Technop6le Brest-Iroise 
BP 832 - 29285 Brest C6dex - FRANCE 

E-mail: J M  .Roueteenst-bretagne.fr 

Abstract 
This paper deals with the matching of two numerical 

surfaces through an elastic 3D transformation. The global 
search of the optimal transformation is performed using 
a new genetic algorithm while taking into account the 
local curvature on the surfaces. Then, we operate a local 
optimization using the information contained in the final 
genetic population. 

1 Introduction 
In medical imaging, registration is a common prereq- 

uisite to the effective use of multiple sources of image 
data. The existence of slight distortions inherent to each 
modality prevents the user from finding easily a good rigid 
matching. As the number of parameters involved in such a 
registration process becomes quite high, complex match- 
ing algorithms are required. 

Besides their diversity, almost all the registration tech- 
niques [I] [2] [3] share a common aspect: the evaluation 
of a distance (or an error) that measures how far two dif- 
ferent images are. Once the measurement is chosen, the 
next step is to find an optimization algorithm which looks 
for the transformation (within a set of allowed geometric 
transformations) that minimizes this distance (or error). 
The new method we have developped is based on a par- 
ticular encoding of an elastic 3D transformation coupled 
with an optimization through a genetic algorithm. This 
solving approach seems to become more and more used 
because of its efficiency [4] [5] [6] [7] [8] [9]. 

2 Description of the work 
The images we are dealing with are a head CT-scan vol- 

ume composed of 92 slices (256x256 pixels), and a set of 
65 slices (256x256) from an MRI exam of the same head. 
The actual size of the voxel differs from one modality to 
the other. We consider one to be the reference and the 
other one to be registered. For instance we choose as a 
reference the CT image and the result of the algorithm 

is a warped image of the MRI volume. Consequently, in 
order to achieve the warping, we are aiming at a func- 
tion which transforms each point of the reference image 
to its estimated homologous in the ’to be registered’ im- 
age. As stated above, the geometric transformation we 
are looking for is a 3D elastic one. We assume that a 
global transformation modeled by a trilinear warping is 
sufficient enough to represent noticeable global morpho- 
logical variations between the two structures that we are 
matching. In the 3D case, such a transformation can be 
expressed by 

where ( 2 1 ,  y1,z1) = T(z0, yo ,  20) denotes the transformed 
positions of site (20, yo ,  zo) of the reference image. The 
corresponding search space has L = 24 dimensions. 

In order to facilitate the matching process we do not 
work directly on the raw images, but we consider perti- 
nent information issued from a preprocessing step. For 
our head images, the easier extractable common feature 
is the boundary surface which separates the air from the 
skin thus our matching process is resumed to the matching 
of two numerical surfaces. These surfaces are computed 
using morphological mathematic tools; the segmentation 
algorithm is beyond the scope of this paper and will not 
be described here. Eventually, the evaluation of the good- 
ness of fit of our two surfaces can be achieved by the use 
of a distance map [lo] (a 3D-image derived from a nu- 
merical surface where the value of each voxel represents 
an approximation of the Euclidian distance between this 
voxel and the numerical surface). 
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3 Optimization process through a genetic 
algorithm 

The transformation described by (1) has 24 parame- 
ters. These parameters allow to calculate the transformed 
location of every site from the reference image to the reg- 
istered image. Besides, the knowledge of the transformed 
position of exactly 8 different sites is just enough to re- 
verse compute the corresponding 24 parameters’. Consid- 
ering the two numerical surfaces as two points sets, the 
matching algorithm just has to find 8 points from each set 
that correspond each other. Since the typical size of the 
sets varies between 30000 and 60000 points, the number 
of possible associations is huge, hence the search space is 
very large. That is why we are using a genetic algorithm 
to explore that search space. Each chromosome (a tenta- 
tive solution) of the genetic population represents a set of 
8 couples of points, as shown by figure 1. 

_ - - _  

.-__-’ J 

Figure 1: encoding of a chromosome 

Basically, a genetic algorithm is a glolbal stochastic op- 
timization procedure which uses the properties of the evo- 
lution of natural systems. The algorithm acts on an itera- 
tive way by allowing parallel evolution in a population of 
N individuals which represents a point of‘the search space. 
The appropriateness of each individuals is measured by a 
fitness function. The basic principle is to let the popu- 
lation evolve by recombining on a random way chromo- 
somes two by two (operation known as cross-over), and by 
modifying randomly the features of the (chromosome (it is 
the mutation). Then, at each step, the iselection of the N 
individuals is carried out by cloning the best individuals, 
dropping the worst and keeping the others. Successive ap- 
plication of these operators let evolve the population with 
a constant number of individuals across the generations. 

A stochastic computation of the performance of each 
chromosome is used in order to speed up the optimiza- 
tion process. A fixed number n of randomly chosen sites 
on the reference surface are projected, using the chromo- 
some’s decoded parameters, onto the distance map. The 
mean error is then computed as the average of the ob- 
served distances. In order to have a function maximizing 
performance value, effective Computation is done through 

lThis is only true when the 8 reference sites are distinct as for 
the 8 corresponding sites. 

the formula2 (2) 

l n  
perf(T) = ; x q ( d ( T ( p i ) ) ) ,  with q(z)  = e-x2/u2,  (2) 

i=l 

and thus 

0 < perf(T) < 1, (3) 

where pi  represents the position of the ith randomly cho- 
sen point of the reference surface, d ( T ( p i ) )  is the value 
read on the distance map at the transformed position of 
p i  by the T 3D elastic transformation. In the following ex- 
periments the smoothing coefficient cr is chosen the value 
4”. 

In order to reduce a bit the search space, we are filtering 
the possible associations by two means: 

0 

0 

4 

At first, we are calculating for each point of the two 
surfaces the value of local curvatures like the Gaus- 
sian curvature. Then, we classify the points with 
respect to the value of the curvature. This classifi- 
cation allows us to tolerate the association between 
points of the same class only. For instance, we do not 
want our algorithm to try to associate points with a 
positive curvature on an image with points with a 
negative curvature on the other image. 

The other way of reducing the size of the search space 
is to initiate the algorithm by a fast (and thus with a 
limited accuracy) rigid registration. A rigid registra- 
tion consists in finding 3 rotation and 3 translation 
parameters and results in giving a global estimation 
of the mutual neighborhood of the surfaces associ- 
ated with a confidence interval (derived from the cal- 
culated goodness of fit of the transformation). The 
information of the mutual neighborhood is used to 
obtain a first approximation of the actual distance 
between a point of one surface and the points of the 
other surface. Then, as shown in figure 2, we can 
constrain the association between points to the same 
neighborhood only (within the range of the confi- 
dence interval). 

Stopping criterion ~- 

One of the problems while using a genetic algorithm is 
t o  decide when to stop the algorithm. The optimization 
process could be stopped when a certain goodness of fit 
has been reached or after a certain number of iterations 
has been performed. In fact, there is no way to check 
whether the right solution has been found or not. In the 
field of genetic algorithms the choice of termination is still 

2Moreover, this formula includes matching abilities; this results 
in a better handling of the points from the reference image which 
do not have an homologous in the other image. 
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Reference Image Target Image After genetic optimization After Dost-analvze 

Figure 2: The possible association with the point p ac- 
cording to a certain rigid transformation whose error is E 

are the points a,  b and c. We assume that all the consid- 
ered points belongs to the same curvature class. 

an open problem. The approach we propose is to set two 
thresholds parameters controlling the stopping criterion. 
The first one is based on the goodness of fit. Given the 
equation (3), the maximum reachable value for the fitness 
function is 1; so if this value is reached, the optimization 
process can stop. The second threshold is an arbitrary one 
which stops the algorithm after a fixed number of itera- 
tions. It prevents the algorithm from running infinitely. 
Once the genetic algorithm optimization process is over, 
the solution to take into account can be chosen. The first 
method we can think of just considers taking the best in- 
dividual among all the chromosomes of the population. 
This approach is suboptimal because it does not take ad- 
vantage of all the information contained in the other in- 
dividuals. The method we use consists in an adaptive fil- 
tering of the final population leading to a subset3 whose 
global performance is better than the best individual per- 
formance. The performance of a group of chromosomes 
is computed by solving the over-determined system gen- 
erated by the whole set of associations described by the 
individuals of the subset. We start from a one-member 
subset containing only the best individuals and we are 
looking iteratively if the adjunction of one new element in 
the subsset increases the performance. The process stops 
when any adjunction do not improve the performance. 

5 Validating the results 
Once the registration is performed we can focus on re- 

sults validation. Various methods are possible like consid- 
ering the raw performance only. This method only gives 
an idea of the goodness of fit but is not good enough 
to decide if the result is far from what we were waiting 
for or not. Moreover, the raw performance is a stochas- 
tic variable and its mean value only indicates the global 

3containing at least the best individual of the final population. 

Figure 3: The post-analyze process consists in select- 
ing chromosomes issued from the final genetic population 
whose group performance is better than each individual. 

( 4  CT (b) IRM (c) Initial mis- 
registration 

Figure 4: Initial images 

adjustment. To estimate the actual goodness of fit, a 
raw performance is of no use without a visual validation. 
For that purpose we use a direct multi-volume rendering 
(DVR) tool [ll] that enable fuzzy surface intersection ren- 
dering between the two numerical surfaces involved by the 
registration algorithm (see images 5(a), 5(b) and 5(c)). 

(a) CT n MRI (b) CT fl MRI (c) CT u MRI 

Figure 5: DVR validation 

Moreover, depending on the sources of the images to 
register, we can validate the results by visualizing the in- 
teresting features of each modality at the same time. For 
instance, CT-scans give a good localization and definition 
of the bones while MRI images give good anatomical infor- 
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mation except for bones and rigid materials. If we extract 
- through some threshold - the regions corresponding to  
the bone material from the CT image we can superimpose 
it on the grey-scale MRI image (as figured out by images 
6(a), 6(b) and 6(c)). Thus, we join the useful information 
of both modalities in one image. 

(a) before regis- (b) rigid regis- (c) elastic regis- 
tration tration tration 

Figure 6: Structural validation 

The figures 4, 5 and 6 summarize the results. The 
CT scan reference image, and the MRI to be registered 
are shown in 4(a) and 4(b). The initial misalignement 
is shown in 4(c). We can then appreciate the renderings 
given by the DVR algorithm showing the intersection (fig- 
ure 5(a) and 5(b)) and the union (figure 5(c)) between the 
two registered volumes. On the intersection images we re- 
mark only a hole at the right behind and. at  the full behind 
of the head wich denotes how well the two numerical sur- 
faces are registered (when misaligned, the intersection is 
almost empty). Eventually the bone structure matching 
is shown for the unregisterd images (figure 6(a)), after 
rigid matching (figure 6(b)) and after elastic registration 
(figure 6(c)). 

6 Conclusion 
The work presented in this paper shciws that 3D elastic 

multimodality registration gives interesting results. The 
robustness of the algorithm over the problem of local ex- 
trema is a big asset versus the other global optimization 
algorithms. The better the encoding scheme, the more 
efficient will be the genetic algorithm. The original en- 
coding using information like local curvature we have in- 
vestigated seems to be a good choice. Moreover, the use 
of a fast rigid registration step improvies largely the per- 
formance of the algorithm by restraining the search space 
to onIy almost realistic association. For further work, we 
plan to  evaluate the effective robustness of the algorithm 
on synthetic geometrical objects and to perform clinical 
validations of this approach. 
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