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Segmentation of Thrombus in Abdominal Aortic
Aneurysms From CTA With Nonparametric
Statistical Grey Level Appearance Modeling
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Abstract—This paper presents a new method for deformable
model-based segmentation of lumen and thrombus in abdominal
aortic aneurysms from computed tomography (CT) angiography
(CTA) scans. First the lumen is segmented based on two positions
indicated by the user, and subsequently the resulting surface is
used to initialize the automated thrombus segmentation method.
For the lumen, the image-derived deformation term is based on
a simple grey level model (two thresholds). For the more com-
plex problem of thrombus segmentation, a grey level modeling
approach with a nonparametric pattern classification technique is
used, namely -nearest neighbors. The intensity profile sampled
along the surface normal is used as classification feature. Manual
segmentations are used for training the classifier: samples are
collected inside, outside, and at the given boundary positions. The
deformation is steered by the most likely class corresponding to
the intensity profile at each vertex on the surface. A parameter
optimization study is conducted, followed by experiments to assess
the overall segmentation quality and the robustness of results
against variation in user input. Results obtained in a study of 17
patients show that the agreement with respect to manual segmen-
tations is comparable to previous values reported in the literature,
with considerable less user interaction.

Index Terms—Abdominal aortic aneurysm, deformable models,
image segmentation, statistical grey level modeling, thrombus
segmentation.

I. INTRODUCTION

AN ABDOMINAL aortic aneurysm (AAA) is an abnormal
ballooning of the abdominal portion of the aorta, which

can break open and cause death. Contrast CT angiography
(CTA) has been the preferred imaging modality in AAA
treatment because it provides detailed information about the
aortic anatomy, making it possible to visualise lumen, calci-
fications, and thrombus in a minimally invasive manner (see
Fig. 1). Segmenting these structures enables the reconstruc-
tion of three-dimensional (3-D) patient-specific models that
can support measurements needed at various stages of AAA

Manuscript received October 1, 2004; revised December 22, 2004. This work
was supported in part by Philips Medical Systems (PMS), Medical IT – Ad-
vanced Development, Best, NL. Asterisk indicates corresponding author.

*S. D. Olabarriaga is with the University Medical Center Utrecht, Image
Sciences Institute, Q.S. 459, Heidelberglaan 100, 3584CX Utrecht, The Nether-
lands (e-mail: silvia@isi.uu.nl).

J.-M. Rouet and M. Fradkin are with PMS Research Paris, 92156 Suresnes,
France

M. Breeuwer is with PMS, Medical IT – Advanced Development, 5680 DA
Best, The Netherlands.

W. J. Niessen is with the University Medical Center Utrecht, Image Sciences
Institute, 3584 Utrecht, The Netherlands

Digital Object Identifier 10.1109/TMI.2004.843260

Fig. 1. Example of an abdominal CTA scan: axial (left) and coronal slices
(center) showing AAA lumen (inner contour) and thrombus (outer coutour)
delineated by experts. On the right, the corresponding 3-D AAA model is shown.

treatment. In particular, these models facilitate the assessment
of the rupture risk, which is based on measurements of the
native AAA, such as diameter and volume [1] and, more
recently, based on indicators derived from hemodynamics
simulation [2]. Moreover, the dimensions of the aneurysm neck
are important to assess the suitability for endovascular repair,
as well as to choose the appropriate stent type and size [1].
Finally, the change of AAA size, preferably volume ([3] and
[4]), is an important indicator of rupture risk in postoperative
follow-up. In spite of all developments in the field of medical
image segmentation, the reconstruction of 3-D AAA models
still demands a significant amount of human intervention. In
practice, most of the preoperative AAA measurements are
obtained by inspecting the image in a slice-by-slice fashion
and manually pointing out the structures of interest. Typi-
cally, the complete contour is drawn slice-by-slice for volume
measurement. Besides being time-consuming and prone to
large intraobserver and interobserver variability, this approach
is becoming extremely impractical with the increasing data
size (e.g., multislice CT). Automated tools for AAA model
reconstruction, such as [5] are, therefore, desired for achieving
higher efficiency and precision in the assessment of AAA
parameters in all treatment phases.

Many highly automated methods for lumen segmentation and
tracking have been reported in the literature (e.g., [5]–[7]). Also
calcification detection and segmentation have been achieved
in an automated fashion [5], [8]. Thrombus segmentation,
however, remains as a difficult segmentation problem due to
the low contrast between thrombus and surrounding tissue in
CTA images (see Fig. 2). Approaches based on image gradient
fail because strong responses from neighboring objects, such
as the spine, lumen, and calcifications, distract the method
from finding the correct boundary. Threshold-based approaches
also fail, since similar image intensity can be found inside the
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Fig. 2. Difficulties for thrombus segmentation. (Left) Histogram of values
inside the thrombus and in the background, showing that this structure is
not separable based only on image intensity. (Center) Result of bi-level
thresholding in [0,100] HU. (Right) Gradient magnitude of image intensity
(inverted image). Note the strong responses (dark regions) at the lumen, the
spine and calcifications, and the weak responses at the thrombus boundary.

thrombus and in the neighboring structures. For these reasons,
the level of automation and/or accuracy of existing thrombus
segmentation methods remains low, motivating our research.

In this paper, a new approach for thrombus segmentation is
presented. It is based on a 3-D discrete deformable model (DM)
and adopts a nonparametric statistical grey level appearance
model built from training data with a supervised pattern classi-
fication technique. This segmentation method is initialized with
minimal user intervention and generates plausible results in in-
teractive response time. By appropriate training of the statistical
model, the method can be adapted in a straightforward manner
to varied imaging circumstances, such as when different scan-
ners or acquisition protocols are employed.

This paper initially provides an overview of existing methods
in Section II, motivating for the adopted approach described
in Section III. The method is evaluated based on 17 patient
scans and corresponding manual segmentations using the exper-
imental setup described in Section IV. A parameter optimization
study is presented in Section V. An evaluation of the method’s
overall performance (segmentation quality and robustness to
user variation) is described in Section VI and the results pre-
sented in Section VII. A discussion and conclusions close the
paper in Section VIII.

II. RELATED WORK AND MOTIVATION

Only a few methods for thrombus segmentation have ap-
peared in the literature. The method by De Bruijne et al. in [9],
[10] is based on active shape models (ASM): a two-dimensional
(2-D) contour drawn by the user in one slice is propagated to
the adjacent one based on grey values similarity. The reported
results are accurate, but the amount of user intervention is
large, since slice-by-slice control is required. The method by
Subasic et al. in [11] is based on 3-D level-sets. A sphere po-
sitioned by the user is deformed into the lumen, which is used
to initialize the thrombus segmentation method. Simple image
features combined in a preprocessing step are used for the
thrombus level-set. Although user intervention is minimal, the
reported results are not accurate. Another method proposed by
De Bruijne et al. in [12] uses a 3-D ASM with a grey level ap-
pearance model based on a nonparametric pattern classification
technique. The user has to draw the top and bottom contours,
and indicate the approximate aneurysm center. Reported results
are accurate, but the amount of interaction for initialization is
still significant. The method recently proposed by Giachetti

Fig. 3. Overview of the AAA lumen and thrombus segmentation method.

and Zanetti in [5] segments the thrombus slice-by-slice with
a 2-D DM initialized with dilated cross-sections of the lumen
boundary, which is segmented from a sphere, similarly to [11].
The thrombus is deformed based on a strong shape constraint
(truncated Fourier series) and an image feature combining in-
tensity gradient and threshold. The amount of user intervention
is significant, due to slice-by-slice control, and accuracy is not
reported.

The above methods suffer either from low accuracy or low au-
tomation level. In this work, we aim at simultaneously obtaining
high automation and segmentation accuracy by combining three
concepts present in these methods. First, the thrombus segmen-
tation method consists of a 3-D DM incorporating local shape
constraints, avoiding slice-by-slice processing and extra effort
for shape training and for alignment with the data at initializa-
tion. Second, the method is initialized with the lumen boundary,
which can be generated with minimal user intervention. Finally,
the DM employs a novel image-based constraint, adopting a
grey level appearance modeling strategy based on a supervised
pattern classification technique. The adoption of such a sophis-
ticated model is motivated by the observation that simpler ones
are unlikely to generate accurate results for the reasons illus-
trated in Fig. 2. A new grey level appearance model built from
training data is, therefore, adopted to generate external con-
straints that steer the thrombus deformation process efficiently.

III. DEFORMABLE MODEL FOR THROMBUS SEGMENTATION

Fig. 3 shows an overview of the method for lumen and
thrombus segmentation, which consists of three steps. First, the
user indicates the vessel segment by clicking two points inside
the lumen. Second, the user interactively segments the lumen
boundary with a DM based on a simple image feature. Finally,
the resulting lumen boundary is used to initialize another DM
for thrombus segmentation.

A. Thrombus Deformable Model

In segmentation methods based on DMs, also called ac-
tive objects, an initial boundary is deformed under internal
(shape-based) and external (image-based) constraints until an
equilibrium is reached (see [13], [14] for reviews). In this work,
we adopt a discrete formulation of DMs in which the object
boundary is represented by a polygonal mesh with particular
topology (2-simplex). The method adopted here, also called
3-D active object (3DAO), was introduced by Delingette in [15]
and extended by the MedISys Group, Philips Medical Systems
Research Paris [16], [17].

In short, the deformation process consists of considering
all vertices in the mesh as physical masses submitted to the
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Newtonian law of motion. In a formulation with discrete time
steps , using central finite differences and an explicit scheme,
the position of a vertex is changed according to the evolution
equation

(1)

where is a damping factor, and are, respectively,
the internal and external forces acting on the vertex, and and

indicate their relative importance in the deformation process.
Typically, , and their values are optimized for the ap-
plication at hand. As in any method based on DMs, the following
main aspects determine the success of segmentation: the initial
boundary, the proper choice of internal and external forces, their
relative balance, and the stopping criterion of the deformation
process. Moreover, the mesh resolution is also important in this
case, since a discrete implementation is adopted. These aspects
are discussed in more detail below.

B. Initial Boundary

The initial boundary corresponds to the lumen surface,
which is generated as follows (see, also, [18]). Two positions
are clicked by the user at the proximal and distal slices of the
vessel segment. From these positions, the volume-of-interest
(VOI), in particular the slice interval for thrombus and lumen
segmentation, is determined. Also, the two clicks are used
to determine the lumen axis with vessel enhancement [19]
followed by minimum cost path tracking [20]. A tube is built
around this axis and adopted as initial boundary for lumen
segmentation.

The lumen DM adopts a simple external force based on
bi-level thresholds of image intensity, which are set by default
to the expected range of Hounsfield unit (HU) values for con-
trast-enhanced blood and adapted interactively, if necessary.
The deformation process converges automatically and success-
fully to the lumen boundary in a few seconds. The resolution
of the lumen boundary is adapted and used directly to initialize
the thrombus DM.

C. Mesh Resolution

The mesh resolution is controlled by a parameter indicating
the target mean face area, and the mesh is adapted automati-
cally with a scheme based on split and merge operations ap-
plied sequentially. The operations are performed similarly as
proposed in [15], while the whole procedure tries to maintain the
given mesh resolution. Particularly, split and merge operations
are repeated until all mesh faces respect the desired resolution
(face area) with a given tolerance. Since 2-simplex faces are not
planar, the face area is approximated as a sum of triangles con-
necting consecutive face vertices and face gravity center.

For efficiency reasons, it is important to find an appropriate
trade-off between the number of vertices evaluated during
deformation and the loss of accuracy caused by smoothing
when a low mesh resolution is adopted. We currently adopt a
coarse-to-fine approach: first a low-resolution mesh is deformed
until convergence, and then the mesh is refined and deformed
again.

D. Internal Force

The internal force imposes regularization and smoothness
constraints on the polygonal mesh, with a tangential and a
normal component. The tangential component enforces the
uniform distribution of vertices on the mesh surface, while the
normal component minimizes the mesh mean curvature in a
neighborhood of a given size. In the adopted representation,
mean curvature is approximated from the elevation angle of the
vertex with respect to the tangent plane determined by its three
neighbors. Neighborhood size here refers to the topological
distance among the vertices – see details in [15] and [21]. As a
consequence, the magnitude of the internal forces varies with
the mesh resolution: for rougher representations, the internal
forces are stronger, and , must be adapted accordingly.
Typically, is reduced in a similar ratio as the mesh resolution
increases.

E. External Force

The external force attracts the mesh to image positions where
certain boundary properties are found. In order to favor a stable
evolution process, the external force is constrained to be
collinear with the surface normal at the location of the vertex

, corresponding to an inflating (or shrinking) force along the
vertex normal

: is inside the object
: is outside the object
: is at the object boundary

(2)

where is the maximum force strength. Furthermore, a
shrinking force is always generated when the vertex is outside
the VOI.

To determine whether the vertex is inside, outside, or at the
boundary, a grey level appearance modeling strategy inspired
by [12] is adopted. A pattern classification approach is used to
determine the most likely class corresponding to the intensity
pattern at the vertex. Patterns are characterized by the image
intensity profiles sampled perpendicularly to the boundary.

For the classification, a nonparametric technique is adopted,
namely the -nearest neighbors ( - , see [22]). In this super-
vised learning technique, the arbitrary probability density func-
tions for each class are estimated by dividing the feature space
into variable cells. A cell corresponds to the “neighbors” (or
closest training points) of a given feature point . This classifier
was chosen due to its suitability for dealing with complex deci-
sion boundaries in the feature space, which is the case of AAA
thrombus appearance.

The probability of belonging to a class is determined from
the density of training points in the cell

(3)

where is the number of points belonging to class among
the nearest neighbors of .

Three classes are considered: inside ( ), outside ( ), and
boundary ( ). The classification features are image intensity
profiles of length and spacing sampled with tri-linear inter-
polation along the vertex normal [Fig. 4 (left)]. Note that and

determine the number of classification features.
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Fig. 4. Intensity profiles used as classification features: profile parameters
(left) and distance d for nonboundary samples (right).

During training, profile samples are collected for three
classes: one at the correct boundary position , delineated
manually, and two at shifted positions inside and outside the
thrombus, respectively, at and [Fig. 4 (right)].
Note that the distance parameter affects only the classifier
training stage.

During deformation, the intensity profile at the vertex
is sampled, and the most likely class is determined by

. The force strength is determined
as follows:

(4)

where is a constant maximum strength and is
the confidence in the classification step. The force magnitude is
reduced by the scale factor when the intensity profile pattern
does not clearly indicate the situation at hand. Therefore, the ex-
ternal force magnitude can be small (and cause the deformation
to stop) because the vertices have reached the boundary position
or due to large classification uncertainty.

Note that the computation of is an expensive step, since
the -nearest neighbors of must be determined. In this work,
we adopt the approximate nearest neighbors (ANN) implemen-
tation by Arya and Mount [23], which allows very fast retrieval
of closest neighbors by introducing an adjustable approxima-
tion parameter . Moreover, we limit the training set to a random
subset of the available profiles. In this way, the extra computa-
tional burden introduced by the classification step is reduced and
interactive response time can be achieved. We currently adopt

and 5% of the profiles are included in the training,
but we observed that results do not improve when larger training
sets or smaller are used.

F. Stopping Criterion

A simple convergence test is used to stop the deformation au-
tomatically when the mesh does not change significantly. Two
convergence detection criteria were investigated: the difference
in volume and the total mesh displacement between two itera-
tions. When the difference or displacement falls below a given
threshold , the deformation is interrupted. Results are robust
with both criteria and a large range of values of , provided that
the is smaller than the amount of typical change at each iter-
ation; otherwise, the deformation will be interrupted too early.
On the other hand, should not be too small to prevent useless
iterations.

We observed experimentally that the proper choice of
threshold depends on the damping factor and the magnitude
of , since these influence the amount of deformation in each
step. When is large, the deformation develops faster, with
larger displacements and fewer iterations. As shown in [15],
however, there is a risk of converging to a wrong solution. In
all experiments is adopted, although we observed that,

Fig. 5. Types of AAA thrombus found in the patient scans: small thrombus
(left), large thrombus with a large amount of calcifications (center) and thrombus
containing mainly soft tissue (right).

for weak , the results are quite insensitive to the choice of
in a large range. The magnitude of is mostly regulated

by its strength . When , the deformation may stop too
early, while when , the deformation continues by the
action of the internal forces only, leading to under-segmenta-
tion. As a compromise, we currently adopt and

; however, no differences are visible for a large
range of .

IV. EXPERIMENTAL SETUP

In Sections V and VI a large number of experiments are de-
scribed that investigate the behavior of the method with varying
parameter settings. These experiments are performed based on
the data and evaluation criteria described below.

A. Patient Data

The images are CTA scans of patients obtained from the
endovascular aneurysm repair programme of the University
Medical Centre Utrecht (UMCU) [24]. They are acquired with
Philips spiral CT scanners [Tomoscan series, Philips Medical
Systems, Best, The Netherlands (PMS)], with a resolution of
0.5 0.5 2 mm. The scans are composed of circa 125 slices
of 512 512 voxels. Seventeen preoperative scans containing
a native AAA were chosen from this study. In all cases, no
stents or other implants are present, the AAA is located in the
aortic segment between the branching to the renal and to the
iliac arteries, and both lumen and thrombus are visible. While
the AAA lumen is typically dilated, the thrombus size and the
amount of calcifications vary largely among these patients –
see examples in Fig. 5. In some cases (3 scans), the thrombus is
small, and its outer contour is located near the lumen boundary.
In other scans, the thrombus is large, containing a large amount
of calcifications (2 cases) or mainly soft tissue (12 cases).

Manual segmentations of the thrombus boundary are obtained
with the PMS EasyVision workstation contouring facilities by
one trained observer (SDO). The contours drawn manually on
each slice are used to reconstruct a 3-D polygonal mesh, which
is then smoothed and resampled, and to generate a binary mask.
The 3-D mesh and mask are adopted as reference segmentation
in the evaluation and training.

A subset of five randomly selected scans is used for param-
eter optimization (Section V), and the complete set is used for
reporting the quality of segmentation results (Section VI). In all
cases, the leave-one-out strategy is adopted, in which all avail-
able data is used for training, with the exception of the scan for
which the results are reported.
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B. Evaluation Measures

The results obtained in the experiments concerning thrombus
segmentation are assessed with three objective measures that
compare a given segmentation result and the reference
(manual) segmentation .

• Segmentation Overlap ( ): relative volume of overlap be-
tween and

(5)

where , are binary masks and is the number of
“on” voxels.

• Volume Error : difference in volume between and

(6)

• Segmentation Error ( ): distance (in mm) between the
vertices in a given result and the closest (triangular)
face in the reconstructed mesh corresponding to .

The statistical significance of differences between results ob-
tained with different settings is evaluated with a paired T-test
and expressed by the null hypothesis probability ( value).

V. PARAMETER OPTIMIZATION

In this section, experiments are performed with five scans to
determine optimal parameters with respect to mesh resolution,
profile configuration and balance of external/internal forces.

A. Mesh Resolution

This experiment investigates the loss of segmentation accu-
racy as a function of mesh resolution. For the scans in the test set,
the manual mesh is resampled with increasing mean face area
and used to initialize a simple DM based on the binary (manual)
segmentation. The image-based force in this case moves the
vertex outwards when it is located inside the thrombus and in-
wards otherwise. The remaining parameters for this simple DM
are and .

Fig. 6 (left) shows the results: as increased, the seg-
mentation overlap dropped due to boundary smoothing.
Fig. 6 (right) illustrates the smoothing effect at high and low
resolutions. Some loss of accuracy was observed even for
the highest mesh resolution ( ), but these differ-
ences were negligible in a slice-by-slice visual inspection
( ). Note that accuracy was acceptable
( ) for .

In subsequent experiments, different mesh resolutions are
chosen for training and for deformation. The highest resolution
( ) is adopted for training the classifier and as
reference segmentation, where maximum accuracy is desired.
During deformation, the coarse and fine mesh resolutions are,
respectively, set to and .

B. Profile Configuration

Here, we investigate the optimal profile parameters (length
and sampling interval ) and the optimal distance for obtaining
nonboundary samples based on the test scans ( ).

Fig. 6. Segmentation overlap as a function of mean face area (left) and effect
of mesh smoothing with a = 1, 20, 50 mm in a cross-sectional view where
the differences are most noticeable (right).

Fig. 7. Positions of test profiles samples, simulating configurations possibly
encountered during the deformation process: cross-sectional (left) and 3-D
(right) illustrations.

Initially, the classification accuracy (percent of
correctly classified samples) is measured for all pos-
sible combinations (72) of the following parameter set-
tings: , , and

. The training set is composed of
profiles collected as described in Section III-E. The classified
profiles are collected as illustrated in Fig. 7 at 10% of randomly
chosen vertices in the reference segmentation. One sample of

is collected at each position, and the other samples are
collected with 1.5 mm spacing. A margin of 4.5 mm around the
thrombus boundary is covered for collecting samples of .
For , samples are collected until the lumen is reached. The
classifier is applied with , but the overall classification
quality is quite stable for a large range of values .
The “true” classification is given by a labeled image indicating
the location of the reference thrombus, lumen and background.
The results obtained with this experiment are discussed below.

With respect to the differences in for and 1 mm, we
observed that they were very small (in average )
and not statistically significant in a paired T-test ( ). Re-
sults obtained with (the in-slice image resolution)
were not more accurate than those obtained with ,
but the first configuration required twice as many features, and,
consequently, a more costly classification process. In the subse-
quent analysis we, therefore, concentrate on the results obtained
with .

Table I and Fig. 8 show the average obtained with different
and for the test scans. The overall classification performance

was typically higher for , but no preferred value of
became evident from these results.

In the second part of this experiment, the segmentation
method is applied to the test scans for profiles with varying
and fixed , . The DM parameters are set
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TABLE I
CLASSIFICATION ACCURACY OF TEST PROFILES FOR VARYING l AND d,

WITH � = 1:0. MEAN AND STANDARD DEVIATION FOR 5 SCANS

Fig. 8. Classification accuracy (
) for varying d (left) and l (right), with � =

1 mm. Mean results for 5 scans.

Fig. 9. (Left) Mean 	 obtained with � = 1 mm, d = 3 mm and varying
l. (Right) Mean classification confusion for each class obtained with the same
configuration.

as described in Section III-E, with , for the
coarse resolution, , for the fine resolution,
and . The training set and classifier parameters are
the same as above.

Fig. 9 (left) shows the average segmentation overlap obtained
with varying for the test scans, indicating that the average per-
formance was superior for . Fig. 10 illustrates the
behavior observed for varying : the boundary expanded too
much for smaller (“explosion”) and, inversely, it did not ex-
pand enough for larger (“shrinking”). This behavior can be un-
derstood by analysing the classification confusion determined in
the previous experiment (see Fig. 9 (right), which corresponds
to the number of samples (percent) of class that are classified
as by the -NN classifier. During the deformation, when a
boundary or outside profile is misclassified as inside, an external
force pointing outwards is generated and the boundary expands
erroneously (explosion). The inverse effect (shrinking) occurs
when a boundary or inside profile is misclassified as outside, and
an external force pointing inwards is generated. Note that the
misclassification of inside as outside class and vice-versa was
roughly balanced for , possibly explaining why op-
timal segmentation results are obtained with this configuration.

Fig. 10. Illustration of the method’s behavior for varying profile length:
cross-section showing the manual and the automatic segmentation obtained for
l = 2 mm (left), l = 5 mm (center) and l = 7 mm (right) with � = 0:5 mm

and d = 3 mm.

Fig. 11. Segmentation overlap (	) for varying � : mean and standard
deviation for five test scans.

In conclusion, the following profile configuration provided
optimal results on the test scans: , , and

.

C. Balance of Internal and External Forces

This experiment investigates the behavior with respect to the
parameters and , which regulate the balance of internal and
external forces. With all the other parameters set as described in
Section V-B, the value of is varied for the coarse resolution
in the range with spacing of 0.1. For the fine
resolution, .

Fig. 11 shows the average segmentation overlap for 5 scans.
In average, results were better for , although similar
segmentations were obtained for . For smaller

, the external force was sometimes too weak and the boundary
remained close to the lumen. For larger , may be too
strong and lead the boundary into the vena cava and bowels.

VI. PERFORMANCE EVALUATION

In these experiments, the goal is to assess the quality of seg-
mentation results obtained with the proposed method, as well as
their robustness with respect to small perturbations in the user
input. The method is applied to all 17 scans with the optimal DM
parameters determined in Section V: , , and

; and ; and and
. Convergence is detected automatically as explained

in Section III-F.

A. Quality of Thrombus Segmentation Results

The purpose of this experiment is to assess segmentation
quality via the measures in Section IV-B. Additionally, the
number of iterations and the elapsed time for deformation (total
for coarse and fine resolutions) are presented to provide an
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TABLE II
SUMMARY OF RESULTS: MEAN, STANDARD DEVIATION,

MINIMUM AND MAXIMUM VALUES FOR 17 SCANS

Fig. 12. Segmentation and volume error for each scan, respectively,D (left)
and � (right). The five test scans are marked with T. ForD : maximum (bars),
mean (dots), and standard deviation (error bars). The horizontal lines indicate,
respectively, max D = 4 mm and � = 2%.

impression about the computational effort required to generate
the reported results.

B. Robustness Against User Variation

Here, we investigate how unintentional variations in the user
input influence the thrombus segmentation quality, namely
small perturbations in the two clicks provided for lumen initial-
ization. The two positions used in the previous experiments are
randomly displaced in a circle with radius of 6 mm in the axial
plane and used to generate the initial lumen surface (smaller
perturbations did not affect the lumen result). Points outside
the lumen were rejected.

In total, five combinations of perturbed clicks are used to ini-
tialize the method as described in Section III-B for all 17 scans.
The resulting variation is measured by the largest difference in
segmentation overlap observed for the
five segmentation results .

VII. RESULTS

Table II summarizes the average results obtained for 17 scans
with the experiment described in Section VI-A. In average, 95%
volume overlap and 4.5% volume error were obtained, closely
to the limit imposed by the chosen boundary representation (see
Section V-A). Moreover, the average segmentation error was 1.3
mm, and the large majority of vertices (89.8%) were within a
distance of 2 mm from the correct boundary.

Fig. 12 presents the segmentation error and the error in
volume calculation for each scan. In six cases, the maximum

was below 4 mm, which was considered an acceptable error
in the experiment simulating interactive segmentation described

Fig. 13. Selected segmentation results (dots) and the manual segmentation
(line). Upper: coronal and axial slices of a successful segmentation (scan 6).
Lower left: bump into bowels and vena cava (scan 4). Lower right: worst result
(scan 2).

in [10]. Fig. 13 (upper) illustrates one of these results, which
possibly displays acceptable accuracy for most clinical appli-
cations. In the remaining scans, errors typically corresponded
to bumps where the boundary expanded into the vena cava and
bowels – Fig. 13 (lower left) shows an extreme example. In
no scan the thrombus boundary completely leaked into neigh-
boring structures. Depending on the accuracy requirements
of the application, these localized errors could be manually
corrected with efficient 3-D dragging tools. Note, however, that
in nine cases and possibly would require no correction
at all, since the error is below the average intraobserver volume
difference of 3.2% reported in [25]. Only for one scan, with a
large amount of calcifications inside the thrombus, the result
was not satisfactory at all because the deformation stopped too
early [see Fig. 13 (lower right)].

With respect to computational effort, the number of itera-
tions and the deformation time varied largely among scans. In
10 cases, the deformation converged in less than 30 s, and only
in one case (scan 14) it took more than 1 min. If this outlier is
ignored, the average deformation time drops to ,
which we consider admissible in an interactive setting.

Finally, with respect to robustness against user variation (Sec-
tion VI-B), results were very encouraging. Although the re-
sulting boundaries displayed minor differences, the variation
in the segmentation overlap was small, in average . In
only one case, out of 85, the generated result was significantly
different from the remaining four produced for that scan.

VIII. DISCUSSION AND CONCLUSIONS

The proposed segmentation method consists of a discrete DM
that adopts an image-based force inspired by approaches where
an appearance model built from grey value information con-
tained in a training set is fitted to the data. This approach is an
adaptation of ASM introduced by Cootes et al. [26], in which
a parametric statistical model is built based on training sam-
ples of correct boundary profiles only. Such a simple model is
not applicable for AAA thrombus segmentation, as shown in
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[12]. Extensions to grey level modeling for ASMs were pro-
posed in [12], [27], in which the model is trained based not only
on samples at boundary positions, but also inside and outside
the object. In both cases, a nonparametric classification tech-
nique ( -NN) is used to determine the new boundary position
by taking the best fit between the model and the data among a
number of candidates. Finally, in the DM method proposed by
Pardo et al. [28], the model is trained in one slice based on a 2-D
contour, with samples at boundary and nonboundary positions.
The most discriminating classification features are selected au-
tomatically from a Gaussian bank, and the obtained parametric
model is propagated to the adjacent slice.

The methods above are similar with respect to the following
aspect: the deformation is driven by a quality of fit that only
takes into account the boundary/nonboundary distinction.
Compared to these works, one novelty is introduced here: the
proposed method uses a three-type class model that also dis-
tinguishes inside and outside nonboundary profiles, and in this
way steers the deformation direction directly and efficiently.
We found that our approach imposes fewer requirements on
the initial surface than when an on-off boundary model is
adopted. In particular, in experiments we observed that the
AAA thrombus segmentation was not always successful based
the on-off boundary model introduced in [9] when the DM is
initialized at the lumen boundary. When the thrombus is large,
all the candidate positions may fall inside the thrombus, and
no deformation occurs. A larger search range would reduce
this problem, however, at a high computational cost, since the
expensive classification step would have to be performed for
a large number of candidate positions. In the proposed defor-
mation scheme, on the other hand, the distance between the
initial and the target boundaries is less relevant. When properly
trained, the method is in principle capable of identifying inten-
sity patterns located far from the target and move the boundary
outwards or inwards accordingly.

The novel grey level modeling and deformation scheme
has been successfully applied to the difficult problem of AAA
thrombus segmentation in 17 patient scans (Section IV). A
large number of experiments were performed to determine the
optimal parameter configuration for five test scans (Section V).
With this configuration, the thrombus DM produced plausible
segmentation results in interactive response time ( ) for
16 out of 17 scans (Section VII). Depending on the accuracy
requirements imposed by the application, six (or possibly
nine) results obtained with minimal user interaction would
be considered acceptable. In ten (or seven) cases, small and
localized bumps into the bowels and vena cava were observed,
and would possibly require manual correction (for example,
with an efficient 3-D dragging tool). Only in one scan the
obtained result was not satisfactory, and would demand more
manual editing. Finally, these results were shown to be robust
with respect to the initial clicked positions (Section VI-B),
favoring segmentation precision.

With respect to the average quality of results obtained in this
initial study (see Table II), it seems compatible with values
found in the literature. The average segmentation overlap
(95%) and volume error (4.5%) are similar to results reported
in [12] (respectively, 95% and 5.1%) and comparable to the

intraobserver variability for AAA thrombus volume assessment
from CTA reported in [25] (3.2%). The segmentation error also
seems to be similar to [12], although the values are not directly
comparable. Note, however, that the results reported here were
generated with significantly less user intervention, favoring
segmentation efficiency. The three-type class model was essen-
tial for obtaining these results: we found that such performance
could not be obtained with a DM using on-off boundary pro-
file training, for which the demands on the initial boundary
are higher. The same is true for simpler, threshold-based or
gradient-based image forces, which often generate implausible
results. In particular, we observed that, with bi-level threshold,
the boundary often embraces other structures with similar
appearance. For the best results obtained with this image force
(when the balance between internal and external constraints
is manually tuned for each scan), an average segmentation
accuracy of and volume error of
were obtained. When gradient magnitude was adopted, the sur-
face was easily attracted back to the lumen boundary. Results
obtained with the proposed method are, therefore, encouraging
and indicate the feasibility of achieving efficient and precise
segmentation of AAA thrombus and lumen. We believe that
this method is an efficient alternative for manual segmentation
that could be valuable for the measurement of AAA volume,
facilitating the assessment of AAA rupture risk in a more
sensitive manner [3], [4].

The proposed method must now be validated for a larger set of
scans for assessing its real utility in a more general context. With
the same training, the method is currently applied to images
of the Hemodyn project [2], which are acquired at a different
hospital with a different scanner and protocol. In particular, the
slice thickness varies between 2 and 5 mm. Initial results are
promising, indicating similar performance as found in our lim-
ited study: segmentation accuracy of and volume
error of (average for three scans).

Finally, the grey level model adopted here is built from
training data using a statistical pattern classification technique
with supervised learning. As such, the segmentation method’s
performance depends on the quality of training, which should
include sufficient and representative examples of the target
patterns. In other words, the proposed method must (and can)
be customized by training to particular imaging conditions. The
evaluation presented here, for example, is based on preoperative
scans obtained in the context of a particular study that adopted
a standardized imaging protocol. Although initial results ob-
tained for the Hemodyn project indicate that this training is also
valid to some degree for other scanning protocols, applying the
proposed method to postoperative scans, or to scans acquired
with multi-slice CT scanners, would possibly benefit from new
training, since the AAA thrombus appearance is likely to be
different. Note that the need of training is at the same time a
“curse” and a “blessing” of supervised learning approaches.
While training typically requires significant effort for manual
annotation, on the other hand, it provides a structured and
straightforward manner of adapting the method to new cir-
cumstances. We feel that adopting a structured approach for
appearance modeling is preferable to ad hoc procedures, which
also require revision when the imaging circumstances change.
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