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Abstract—The aim of this paper is to present an original usage of
genetic algotithms as a robust search space sampler in application
to 3-D medical image elastic registration.

An overview of the standard steps of a registration algorithm is
given. We focus on the genetic algorithms use and particularly on
the problem of extraction of the optimal solution among the final
genetic population. We provide an original encoding scheme re-
lying on a structural approach of point matching and then point
out the need for a local optimization process. We then illustrate
the algorithm with a concrete registration example and assert the
results with a direct multivolume rendering tool. Finally, the algo-
rithm is applied on the vanderbilt medical image database to assert
the robustness and in order to compare it with other techniques.

Index Terms—Genetic algorithm, global optimization, image
registration, medical imaging, pattern matching.

I. INTRODUCTION

M EDICAL IMAGING of the brain is used by surgeons
and clinicians more and more to make diagnoses or plan

therapies. Nevertheless, the number of modalities available and
the amount of data (a set of 2-D slices constituting 3-D im-
ages) make them very difficult to use directly. Moreover, each
modality gives only a limited kind of information, and very often
two or more modalities of the same patient are used to obtain a
good understanding of the sensed material. Here we will focus
on two modalities often used for the visualization of the brain.
The first one giving good structural information (i.e., good con-
trast for the bones) is the computed tomography (CT) scanner,
whereas magnetic resonance imaging (MRI) provides good in-
formation on soft tissues (such as white matter and grey matter).

A frequent problem arises when images from different modal-
ities (or when using only one modality but taking images at dif-
ferent times) need to be compared. The mental superposition
is often hard to realize, particularly on 3-D images, and a more
practical operation requires computer assistance while matching
two 3-D images. This leads to the general problem of superim-
posing two different 3-D images on the same scene (possibly
seen by different sensors). Registration refers to finding a ge-
ometrical transformation that corresponds any point from one
3-D image to its homologous on the other image. Furthermore,
MRI sensors are known to induce slight distortions on the im-
ages and very often prevent the user from easily finding a good
rigid match (a 3-D translation plus a 3-D rotation).
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This paper introduces an original approach to overcome dif-
ficulties of multimodality global elastic registration. A struc-
tural description of the volumes and a combinatorial optimiza-
tion process allows us to solve, in a reasonable time, a nonlinear
problem presenting numerous degrees of freedom. In another
way, our algorithm could be seen as a generalized stochastic
Hough transform using the principles of natural selection. Thus,
the great originality of our approach resides from the particular
use of a genetic algorithm (from encoding to the examination of
the genetic space of the solutions).

After giving some generalities about medical image regis-
tration in Section II, we will introduce in Section III the ge-
ometrical considerations of registration we used for our algo-
rithm and focus (in Section IV) on genetic algorithms and global
optimization problems. Section V will detail our registration
method, and a registration example will be given in Section VI.
Finally, we will discuss the validation of the algorithm on the
vanderbilt RREP dataset in Section VII and then conclude with
a discussion on some open issues and future directions.

II. BACKGROUND

Several methods already exist to find a rigid registration be-
tween two medical images in a reasonable time, and very few
are able to perform elastic registration. The major drawbacks of
standard registration techniques are their sensitivity to the ini-
tial positionning of the images, the issue of dealing with mul-
timodal images, and the prohibitive processing time of elastic
registration. Since the purpose of this paper is not to give an ex-
haustive description of medical image registration techniques,
we refer the reader to the works of Van den Elsen [1], Brown
[2], Lavallée [3], and Maintz [4] who have written extensive and
farily up-to-date surveys.

Nevertheless, we want to point out the main steps of a
classical registration algorithms. The common ground in regis-
tration techniques lies in linear sequential data processing. It
begins with an optionalpreprocessingof the raw data (mainly
filtering or segmentation/extraction of interesting features
on the images). Then, it requires the definition of afitness
function (measuring the goodness of fit between the target
image and the transformed image) dealing either directly with
grey-level information or with extracted or intrinsic features.
Moreover, the registration requires a model of the mapping
between the two image fields (warping model) [5]. The more
common approaches make use of a global geometric model.
The warping model might be chosen either rigid (translations,
rotations and scaling only) or nonrigid, and either global or
local. Then, one has to find the parameters of the geometric
transformation (within the warping model) that maximizes
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the fitness function. This step is anoptimization procedure,
which can be deterministic, iterative, or stochastic, and either
global or local. Classical local optimization procedures are Hill
climbings or iterative searchs, while global optimizations are
often stochastic algorithms like simulated annealing, stochastic
hill climbing, or genetic algorithms [6] (this last reference
uses a generic genetic algorithm to address the monomodality
elastic registration problem and constitutes a background to the
algorithm proposed in this article). Finally, the last important
step of a registration algorithm is thefusionand/or interpreta-
tion of the registered images. A classical approach might be to
isolate the information (such as bone structures from CT scans
and grey matter from MRI) of each modalities and recompose
them on a hybrid volumic image. The visualization might then
be achieved slice by slice or by using a 3-D rendering tool.

III. GEOMETRIC CONSIDERATIONS

The images we want to register are essentially CT scans and
MRI images of the head (skull brain) as shown in Section
VI. Though the skull is a rigid bone structure, we believe that
a rigid registration is not efficient enough to take into account,
on the one hand, the slight distortions usually induced by MRI
sensors and, on the other hand, the possible evolution of the
soft structures (e.g., brain). As the registration must be weakly
elastic and smooth, we prefer a global transformation over a
local one.

A. Generic Notations Used

Given two 3-D images and
, registering on is equivalent to determining

the geometric transformation that matches with .
is globally defined as an application , and is
defined for by

if
elsewhere

(1)

The exact definition of will be given in Section III-B while the
fitness function maximized for is defined in Section III-C.

B. Global Elastic Transformation

A global elastic transformation, simple enough to be com-
puted quickly (this is a key point while making use of a genetic
algorithm where the evaluation of each individuals is the cru-
cial point) and elastic enough to model MRI distortions, is the
trilinear transformationwhich is a polynomial warping. This is
the extension of a shearing along three axis, and it is defined by

(2)

where and are the coefficients of the trans-
formation. Pointing out that and are either 0 or 1, the
dimension of the search spaceis then .

With such a direct equation (2), it is not easy to express the
boundaries of the search space. Nevertheless, the transformed
location of eight points from image to image enables
an indirect description of the transformation involved. Let

(respectively, ) be a vector that represents the
(respectively, ) coordinates of eight points from

and (respectively, ,
) be their transformed coordinates . Let

us denote by the 8 8 transformation matrix deduced from
the and components and in relation with (2). The
line of is

The transformed vectors and are given by (3),
shown at the bottom of the page.

The computation of the polynomial coefficients is
performed by the inversion of the former linear relations. It is
important to notice that, given eight pairs of points (or eight cor-
respondences betweenand ), there exists a unique trilinear
transformation managing the pairing of these points (the ex-
istence of the transformation is ensured if every eight points
and their correspondents are distinct).

Therefore, the aim of our algorithm will be to find pairs of
homologous points between the two images and achieve global
warping with the computed 24 coefficients.

Even if we have pointed out that eight pairs are enough to
compute the transformation coefficients, a least squares exten-
sion of (3) is possible; this will imply an overdetermined system
computation rather than a mere matrix inversion. These proper-
ties will be used and discussed more in detail in Section V.

C. Geometric Distance and Fitness Function

The optimality of the transformation is defined by a criteria
of distance or fitness. The distancebetween two images is in-
versely proportional to the goodness of fitof the two images.

is then the transformation that maximizesor minimizes
for each transformation of the search space with respect to

the images and . It is similar to choosing

(4)

The estimation of the goodness of fit is not a trivial process.
Many distances exist with different advantages and drawbacks.
A grey-level correlation is not usable here because we need to
calculate the fitness function many times. Thus, a fast feature
based fitness function has been chosen. A common feature avail-
able on both MRI and CT-scan images is the air–skin interface.

with (3)
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A preprocessing step addresses the extraction of theses points
from both modalities, providing us with two numerical surfaces.
The computation of a distance between two 3-D images is then
reduced to the computation of a distance between two numer-
ical surfaces.

Let ( ) be the surface extracted from ( ), and
be the Euclidean distance between pointsand .

Then the distance1 between and with respect to the
transformation can be defined by

card
(5)

At this point, we notice that the creation of a distance map
—a 3-D image on the domain where each point rep-

resents —greatly improves the execution
time. The new expression of the distance using a distance map
becomes

card
(6)

However, the distance remains quite long to compute
when the cardinal of or is large (typically within the range
30 000–60 000). Thus, we have implemented a stochastic varia-
tion of the distance that we will denote . A certain number
( card , e.g., ) of points are randomly chosen in
the set , and the distance is computed with this new point set
noted .

(7)

Furthermore, we found that this distancewas not robust
enough in the presence of outliers, i.e., first, when dealing with
points whose transformed location does not belong to the dis-
tance map, and second, when a large number of points randomly
chosen in does not have homologous matches in(this is
a problem resulting from nonoverlapping parts of the volumes).
This is why we introduced a fitness functionfiltering on the
large values of the distance and keeping the relevant informa-
tion; in doing so, the sum is only performed on randomly chosen
points whose transformed location belongs to the distance
map (these are points that might be seen as part of
a subset ). The corresponding fitness is given by the relation-
ship

(8)

Fig. 1 shows the application of the fitness function [the part
under the sum of (8)] on a distance map. The image in Fig. 1(a)
is a slice extracted from the original 3-D distance map of a MRI
volume, and the image in Fig. 1(b) features the usage of (8) on
the same slice with .

If no randomly chosen points of are transformed close
enough (depending on the value of, usually ) to ,

1Note that the term distance used here is not a real mathematical distance,
because the expression does not satisfyd(a; b) = d(b; a). We only have
d(a; a) = 0 andd(a; b) > 0.

(a)

(b)

Fig. 1. (a) Distance map. (b) Fitness function mapping with� = 4.

(8) implies that . If the points randomly chosen in
have a transformed location with respect toonto , then is
maximal and equals 1.

IV. GLOBAL OPTIMIZATION USING A GA

This section intends to present the genetic algorithms (GA’s)
as a global optimization technique. After a short overview of
the general functioning, we will focus on two particular GA’s
used (those working on real parameters and those working on
indexed sets) and then we will discuss some issues regarding
the GA’s.

A. Basics of a Genetic Algorithm

Genetic algorithms are adaptive generate-and-test algorithms
using the principles of natural population genetics and natural
selection mechanisms. The main idea is to encode the parame-
ters of a problem in a chromosome as a list of bits (see Fig. 2(a)
where parameters with a fixed lengthare encoded). We then
consider a population of chromosomes (potential solutions) and
let them evolve with respect to three rules (we refer the reader to
[7] for more details): 1) the selection/reproduction that evaluate
the performance of each individual and duplicate only the good
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Fig. 2. A complete GA cycle from: (a) the chromosome encoding to (b) the
genitors selection, (c) the mutation (random search space exploration), and (d)
the crossover (hereditary conservation of parameters).

one (depending on a selection scheme) [Fig. 2(b)]; 2) the mu-
tation which randomly modifies some bits of the chromosome
and which is responsible for the search space exploration [Fig.
2(c)]; and 3) the crossover which swaps the genetic material be-
tween some elected couples of chromosomes [Fig. 2(d)]. After
a few generations, and because of the nature of the exploration
of the search space and the suppression of the bad individuals,
the overall performance of the population increases.

It is important to notice that a postprocessing step (local opti-
mization) is essential for the accuracy of the algorithm. Actually,
even if a GA is efficient enought to avoid being trapped in local
extrema, it also a slow convergence to the optimum solution.
Thus, a GA might always be considered a tool giving a good
approximation of the final solution and might always require
the use of a local optimization procedure. Moreover, we want
to point out that it is more meaningful to use the information
included in all the chromosomes of the final genetic population
rather than only make use of the few best elements.

B. Genetic Optimization and Image Matching

As we will see later, for our registration algorithms we used
two kinds of GA. The first one, used to achieve an initial rigid
registration, works directly with real parameters, and the second
one works on an indexed search space.

1) GA with Real Parameters:For a rigid registration, the
parameters we are looking for are real numbers representing a
3-D translation and the angles of a 3-D rotation (a total of six
real numbers). We could have used a classical GA working with
strings of bits that represent numbers, but, in order to avoid sam-
pling problems, we directly encoded a chromosome as a suc-

cession of six real numbers (three for the translation and three
for the rotation). Furthermore, we introduced a repartition con-
straint on the population over the search space using the prin-
ciple of the Latin squares [8]. The latter ensures that, from the
initial population elaboration to the final genetic population, a
certain percentage of the population is within a subset of regions
of the search space. In fact, we control that the projection of the
population over each of the six axes of the search space is uni-
form in the sense that a minimum amount of points is present in
each subdivision of the parameter space.

This new constraint entails a redefinition of the mutation and
the crossover operators. The new mutation is bound to a cell of
the search space, and thus it is considered to be a local search.
This new mutation operator is therefore more efficient for the
fine tuning of the good solutions (faster and more accurate con-
vergence) within a cell because its scope is limited to a small
area. Moreover, we notice that this scope limitation of the mu-
tation operator is only possible because each cell of the search
space is reachable via the succession of crossover operations.
Concerning the crossover operator, the swapping of entire pa-
rameters between two chromosomes does not modify the dis-
tributions of the projections over the axis of the search space,
thus our new constraint does not imply a modification of our
crossover operator.

Moreover, we ensure a dynamic control of the homogeneity
of the population (necessary because of the selection operator
that might disturb the chromosome’s distribution) by moving
some chromosomes from over-represented regions to deserted
regions.

Among all possible crossovers (one-point, cyclic, uniform),
the uniform one has been chosen. For a selected pair of chro-
mosome to undergo the crossover modification, we look itera-
tively through the genes (parameters) of the chromosome and
decide whether or not to exchange the values of the genes (with
respect to a random exchange rate). Thus, we give up the idea
of a crossover point which usually is order-dependent. In addi-
tion, we have experimented with some evolutionist operators,
such as the hybrid simplex method used in [9], without success.
We noticed that making use of simple operators (like mutation
and uniform crossover) a great number of times is more efficient
than using more complicated operators (such as the evolutionist
operator) which are slower.

2) GA on Indexed Sets:The second GA we used does not
look for integer nor real parameters but for eight pairs of points
which, given (3), is an equivalent problem. It works on an in-
dexed set (unidimensional search space) where a potential solu-
tion (a chromosome) is a combination of eight different indices.
Thus, the encoding is directly a combination of eight different
indices. The mutation corresponds to changing one index by
another index of the search space, while the crossover simply
consists of swapping some index between two chromosomes.
The only constraint added to the mutation and crossover opera-
tors is a set of coherence tests on the chromosomes. As we will
see in Section V, an index represents a couple of points from
the target image to the registered image. Thus, a chromosome
is coherent only if the 16 points designated by the eight cou-
ples correspond to eight distinct points on the target image and
eight distinct points on the registered image. So, we check that
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Fig. 3. General synopsis of the registration algorithm.

a mutation operator or a uniform crossover does not introduce
duplicate origin or destination points.

Therefore, the GA working on the indexed set is not used as
a stand-alone optimization tool. It is introduced here as a smart
search space sampler that will work in synergy with a local opti-
mization tool. Thus, the GA will provide a valuated sampling of
the search space to the final local optimization process and will
be responsible for the robustness, while the local optimization
improves the accuracy of the registration process.

C. Limits of the GA’s

The main drawback of a GA is the risk of premature conver-
gence to a local extremum, sometimes due to a bad initialization
of the search space. This is why we use a dynamic control of
the search space (with the Latin squares principle). The choice
of the stopping criterion is also a main issue. How long must it
take to have a good accuracy quickness ratio? Knowing these
limits of a GA, we see that it is almost mandatory to connect
it to a local optimization process. Thus, a GA can be seen as
a parser of a search space looking for a set of goodoptimafur-
ther exploited by a nonstochastic optimization algorithm. At this
point, we therefore consider a GA not only as a robust optimiza-
tion technique, but also as a smart search space sampler.

V. REGISTRATION PROCEDURE

This section presents the overall approach used to solve the
registration between a CT scan and an MRI image of a human
head. The chart in Fig. 3 describes the different parts of the
process that will be detailed in the next paragraphs. The first
stage addresses the acquisition of the images and the prepro-
cessing for the extraction of the interesting features (external in-
terface air/skin). This leads to the extraction of two sets of points
( and ), one for each modality. Topologically, the sets
and describe numerical surfaces, and thus it is possible to
compute for each element of these sets the local curvature (we

use the Gaussian and maximum curvature). We define a clas-
sification function returning the belonging class of a point.
If and , two points from and , have a similar local
curvature (for instance, the same Gaussian curvature sign), then

. Moreover, we compute from the second image
(the MRI volume) a Euclidean distance map which is a volume
where the value of each voxel represents the Euclidean distance
to the numerical surface (e.g., see [10] for the computation of
the distance map). For more details on the functioning of these
preprocessing algorithms, we refer the reader to [11].

Then a three-step (see Section V-A) algorithm computing the
parameters of the transformation is achieved. Finally, the image
warping is performed in the last stage (Section V-B).

We would like to remind the reader that the underlying idea
behind our robust registration process is to extract two sets of
points belonging to the air–skin interface of each images and use
them to perform a global rigid matching (step 1) that initializes a
robust point-matching (steps 2 and 3) algorithm. The robustness
of the point-matching algorithm is ensured by a good filtering
of misleading point associations (the outliers) and then by the
use of a GA as a smart search space sampler (step 2) further
explored by a local search optimization (step 3).

A. A Three-Step Robust Registration Algorithm

1) Global Rigid Matching: A global rigid registration is
used to initialize the robust point-matching algorithm. We
assume that the elasticity of the transformation we are looking
for is weak because the brain skull is a rigid structure and
because the distortion involved by the imaging devices is not
very large. Thus, a rigid matching, even if not extremely accu-
rate, is a good initial guess of the final transformation. On the
basis of such a rigid matching (along with its own confidence
factor which relies on the median distance between the two
numerical surfaces and with respect to the rigid transformation
parameters), one may eleminate aberrant associations of
nonhomologous surface points.

As stated before, the rigid transformation parameters are six
real parameters, or a 3-D translation vector and three rotation
angles. These parameters are determined by a GA working di-
rectly on real numbers (see Fig. 4). Note that the search space
is bounded to plausible intervals (we choose a maximum trans-
lation vector and look for rotation angles between and ).

2) Smart Sampling of the Point-Matching Search
Space: The 24 parameters of the global trilinear transfor-
mation we are looking for are fully defined by the knowledge
of any eight points from the 3-D target surface and their
correspondents from the 3-D surface to register. Thus, we
use a point-matching algorithm that will try to determine the
correspondences between the points of the two images. Since
the size of the two surfaces is too large to attempt a direct search
among all the possibilities, we construct a list of possible point
pairs using the best rigid registration with a median
error distance and the class partitioning. This results in
the following rule: a point from the and a point from

are associable if and only if and belong to the same
curvature class and satisfy (9) where is the median error
distance between and using the rigid transformation

(see the notation used in Section III). We set a maximum
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Fig. 4. Rigid registration process using a GA.

Fig. 5. The point pair selection according to the curvature class and the rigid
registration mean error.

allowed distance as the double of the median distance to
eliminate the outliers. A threshold value of 2 has been chosen
as a good compromise between the filtering of outliers and the
search for elastic transformations

(9)

Thus, the set is defined by

and (10)

Fig. 5 illustrates the idea of the point pair creation given two
classified point sets, a rigid transformation, and a median
distance . On this drawing, the only points that can be as-
sociated with from are the points notedand because
they belong to the same curvature class (the class of positive
curvature in this example), and they are in the same neighbor-
hood (with respect to the transformation).

We then use a GA algorithm to look for eight pairs through the
index set resulting in good elastic transformation. The pur-
pose of this second step is not to directly determine the best octet

of index giving the elastic transformation, but rather to sample
the search space (set of octet of index) by keeping elements of
the search space that are present in the final genetic population.
In doing so, we are using the GA as a robust stochastic sam-
pler of a wide search space giving a new reduced search space
usable by a local (deterministic) optimization process (step 3).
The overview of the second step is similar to Fig. 4 where the
search space shown in (a) is now, the transformation model
shown in (b) is the elastic trilinear one, the chromosome en-
coding shown in (c) is a set of eight different indices (a point
from ), and finally the output of the algorithm shown in (d)
is the final genetic population (set of chromosomes).

3) Step 3: Fine Tuning the Solution:Using directly the best
element of the final genetic population is not considered as op-
timal. Each element of this population contains a significant
piece of information. Thus, we used an algorithm managing the
extraction of the information contained in each chromosome.
We know that eight is the exact number of point pairs required
for the computation of the 24 parameters of the global trilinear
transformation. Nevertheless, with a greater number of point
pairs, it is still possible to compute these 24 parameters, with
the difference being that using eight pairs results in an interpo-
lation and using more pairs result in an approximation. Thus,
we see that using a greater number of couples will help to filter
out the noise inherent to the segmentation of the surfaces and
give the possibility of using a larger part of the genetic popula-
tion. This is in great part responsible for the robustness of our
registration algorithm.

The post-analysis consists in starting from the best eight pairs
found by the GA, and dynamically looking for other pairs that
improve the fitness when merged to the previously selected pairs
until no other pair is able to significantly increase the fitness.
Because the order in which the pairs are merged to form the
final solution is important, it is sometimes possible to again im-
prove the final solution by removing some of the selected pairs.
Therefore, a second pass in the postanalysis algorithm consists
of parsing the selected pairs and checking if a removal increases
the overall fitness. Achieving this two-pass process, the infor-
mation available in the final genetic population is quickly (typ-
ically a few seconds) and fully exploited.

The synergistic execution of these three steps (rigid registra-
tion, search space sampling, and local optimization) is the core
of the robustness and the accuracy of our optimization algo-
rithm.

B. Image Reconstruction and Fusion

Once the registration parameters are computed, one has to
evaluate the quality of the registration. Whereas several numer-
ical methods exists to estimate this quality, we use a visual as-
sessment of the registration. After achieving a direct warping
with respect to (2), we have the target image(as defined in
Section III-A) and , which is the warping of aligned with

. On the one hand, the visual assessment could be done slice
by slice with, for instance, a superposition of the bone struc-
tures, extracted from the CT scan, onto the soft tissue from the
MRI image. On the other hand, a direct multivolume rendering
(DMVR algorithm presented in [12]) can be used to evaluate the
intersection and the union of the fuzzy surfaces of our volumes.
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VI. RESULTS: A REGISTRATION EXAMPLE

We propose a registration example achieved on real CT scans
and MRI images. After a quick presentation of the raw data, we
will discuss the different registration steps, ranging from seg-
mentation to the computation of the parameters and the visual
assessment.

A. Data Sets

The data we are working on are a CT scan and an MRI volume
of the head, whose physical dimensions are (256256 91)
voxels for the CT scan and (256256 68) voxels for the MRI.
It is interesting to notice that the voxels are noncubics and have
a different size for both images (the scope of the CT scan is
(232.82 232.82 165.81 mm), and (265.45 265.45 141.06
mm ) for the MRI volume).

Our algorithms are able to deal with slightly anisotropic reg-
ular grids. There is no need to provide isotropic images which
prevent a resampling stage.

Fig. 6 presents 3-D renderings of the initial CT and MR vol-
umes. Note that the artifact volumes at the back of the CT image
are part of the raw images. These volumes could have been re-
moved in the segmentation step in order to facilitate the regis-
tration (the fitness computation). Nevertheless, we have chosen
to keep these outlying structures in order to assert the robustness
of our registration algorithm.

The segmentation step will not be addressed in this paper
(see [11]). We will consider already segmented images, i.e., two
point sets and , the distance map , and the curvature
classification as the inputs of the registration algorithm.

B. Rigid Registration

The first step of our algorithm is the establishment of a global
approximation of the matching through a rigid warping. With
the images used, this step is achieved in an average of less than
20 s (the PC used ran Linux 2.2.7 on a Bi-PentiumPro 233 MHz
with 192 Mo EDO RAM). The quality of this registration is ap-
preciable on Fig. 7 (top). Table I summarizes the results obtained
for each step of the algorithm.

This rigid registration step requires the tuning of some pa-
rameters, mainly for the genetic algorithm. We have studied
the influence of the genetic parameters and noticed that, if they
were chosen in an acceptable (standard) range of values, they
only interfere with the processing time. To be precise, we have
chosen a population of 500 chromosomes, evolving over 100
generations. The mutation probability was set to 1% while the
crossover probability was tuned at 80%. Finally, we have taken

stochastic points for the computation of the goodness
of fit [see (7) and (8)].

The physical values of the rigid transformation found is a
3-D translation vector of in millime-
ters and the three rotation angles (along the axis)

in radians.

C. Elastic Point-Matching

The knowledge of the rigid registration fitness (74.9%) al-
lows us to compute the confidence interval for the couple cre-
ation (with respect to the rigid transformation parameters and,

Fig. 6. Direct volume renderings of the initial CT and MR-T1 images of
the Vanderbilt dataset. The seven top images (patients) correspond to the CT
modality while the seven bottom images relate to the MRI modality of the
respective same patients.

whenever possible, to the differential geometry classification).
Equation (9) gives a confidence interval mm.

With the 35 866 segmented points on the MRI image and
the 63 710 points on the CT scan, more than a million couples
satisfying the previous criterion are created in less than 4 min
without using the curvature information. This step is the most
CPU consuming part of the algorithm. We note that using cur-
vature classes improves the rapidity of the algorithm; Table I
shows the computation time and the registration quality with
one curvature class (i.e., no classification), then with three cur-
vatures classes.2

We then apply the second GA which will look for a minimal
set of matching points. As stated above, this step is considered to
be a smart search space sampling because it transforms a search
space into another search space of the same kind with only the
relevant points.

For this GA, we have used the same parameters as for the
first GA except for the number of points for the stochastic fit-
ness computation (here ), and it ran for about 51 s.
The best chromosome gives a stochastic fitness of 79.5%. This
GA has 500 chromosomes of 8 couples each. Thus, it had 4 000
potential couples to evaluate. After the convergence of the GA,
only a hundred different couples exist in the final population and

2Classification was made on the Gaussian curvature value of crest-line points.
Four classes are set up. A class with large positive Gaussian curvature, one with
large negative Gaussian curvature, a class with almost nil curvature, and a reject
class for other points. The first three classes generally represent 50% of all the
points of the segmented surfaces, while the reject class is not used.



ROUETet al.: GENETIC ALGORITHMS FOR A ROBUST 3-D MR-CT REGISTRATION 133

Fig. 7. Visual assessment of the median registration achieved on patient 1,
from MR-T1 to CT. The fuzzy intersection renderings denotes a good overall
alignment of the external surfaces, with, as predicted, a better registration in the
elastic case than in the rigid approximation case.

TABLE I
GLOBAL RESULTS OF THEREGISTRATIONEXAMPLE

constitute the new search space of the third step (local optimiza-
tion).

D. Fine Tuning of the Solution

Finally, we ran the local search on the final genetic popula-
tion (new search space). Given that we have a small search space
(for the example used we have a hundred of couples), the fine
tuning is very fast. The final fitness obtained is roughly 80%
to 82%, depending whether we used or not a Gaussian curva-
ture classification, which is not very relevant because of the
stochasticity of the fitness. Better appreciations might be done
on Figs. 7 (bottom) and 8.

As shown in Table I, statistics have been conducted to assert
the accuracy of the algorithm. On this table we show the stan-
dard deviation of the fitness value for about 20 registrations of

Fig. 8. Direct multi-volume renderings of the initial medical data.

(a)

(b)

Fig. 9. (a) Rigid and (b) elastic (without curvature information) registration.

the same volumes with the same registration parameters. In ad-
dition, we have studied the influence of the genetic parameters
on the behavior of the algorithm (accuracy, velocity and robust-
ness). This study has demonstrated that the choice of the genetic
parameters has a negligble influence on the accuracy, except for
very degenerated values (i.e., almost no mutation and crossover,
too few genetic iterations, or too small genetic population).

E. Visual Assessment

Figs. 6–8 summarize the results obtained at the different im-
portant steps of the algorithm. It is important to appreciate the
information given by the multivolume renderings, especially by
the intersection of two volumes. If two volumes are misregis-
tered, it is obvious that the intersection will be noncoherent or
contain some holes. Fig. 6 presents the data before registration,
and Fig. 7 (top) presents the result of the rigid registration (step
1). Two different views are presented: the volume intersection
on the left, and an axial slice fusion on the right. The fusion is
an overlay of the bone structures (in green) extracted by thresh-
olding on the CT image (slice 30) and the grey-level MRI infor-
mation (same slice of the reconstructed image).

Fig. 7 (bottom) shows the results of the elastic registration
achieved without using a curvature classification. Finally, Fig. 8
shows the optimal elastic registration achieved using three cur-
vature classes. The presence of holes at the rear right side of
the intersection volumes denotes a small misregistration of the
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Fig. 10. Elastic registration using three curvature classes.

external surfaces, but a good alignment overall of internal struc-
tures (see slices on the left of the drawing).

The overall registration time (less than 5 min on a 233 MHz
PC running Linux) is very good in comparison with the compu-
tation time obtained with other registration techniques (20 mn
on a DEC ALpha Workstation for Thirion’s Maxwell daemon
[13], and 9 h on a MASPAR).

VII. V ALIDATION ON A MEDICAL DATASET

In order to assess the robustness of the algorithm and to com-
pare with existing methods, we have applied the registration on
the Vanderbilt RREP dataset. After a brief presentation of this
dataset, we will explain the employed methodology; further-
more, we will discuss the validation of the elastic registration
and then compare the rigid registration with existing methods.

A. The RREP Dataset

RREP stands for Retrospective Registration Evaluation
Project (see [14] for more details). This project is designed
to compare CT-MR registration techniques used by different
groups. The idea is to provide a shared database of CT and
MR image that each group can download and use to compute
a rigid registration (PET images are also available but are not
of concern for our algorithm because the air–skin segmentation
of these images is particularly difficult). The latter is then
compared with a gold standard registration obtained by a
prospective, marker-based technique.

Amongst the images of the database, CT and MR couples
from seven different patients are available. For almost each
patient there exist six different MR images (T1-weighted,
T2-weighted, Positron Density, and three other obtained with a
geometrical correction of the three first ones), and one CT-scan.
For more information, we invite the reader to visit the Van-
derbilt home page.3 Nevertheless, notice that the VOI covered
by each volume of the database varies greatly. Some volumes
only correspond to the top of the brain whereas some other
maps show from the nose to the top of the head. This feature is
particularly important to asses the robustness of the algorithm.
Moreover, note that we only used fpur kinds of MR images for
our different registrations. We have not used the T2-weighted

3[Online]. Available: http://www.vuse.vanderbilt.edu/~jayw/

MR images because the contrast around the air–skin region
was not sufficient to allow a good segmentation. Fig. 9 shows
direct volume renderings of the seven CT scan volumes and the
seven T1-weighted MR volumes of the dataset.

The registrations of the RREP images addressed in this sec-
tion were achieved without using any local curvature informa-
tion because the slice spacing was not accurate enough to enable
use of a differential geometry.

B. Methodology and Results

1) Elastic Validation: On the one hand, for each of the seven
patients of the database, we have computed 11 elastic registra-
tions, and then we have analyzed the stochastic performance of
each registration from steps 1 to 3. For each registration, we
considered the CT image as the target image because less dis-
tortions occur during the acquisition process of these images
and thus are more reliable with respect to the true topology of
the head. In summary, 411 registrations are achieved for each
of the seven patients. The main numerical results are reported
in Table II. This table first points out the fastness of the algo-
rithm along the different steps (the CPU times are presented in
seconds). Then, the stochastic performances denote an improve-
ment between the rigid registrations and the final results which
mean that elastic registration was needed. The standard devia-
tion (based on 11 registrations) is rather small on all cases which
means that all the registrations are quantitatively comparable.
Moreover, we want to point out that we have realized a visual
assessment of the median results (the fifth out of the 11 results).
These visual assessments made on the same basis as those of
Section VI have shown a good overall alignment of the images
of each patient (see also Fig. 10 presenting median MR-T1 to
CT rigid and elastic registration achieved on the first patient of
the database).

2) Rigid Results Comparison:On the other hand, the main
purpose of the Vanderbilt project was to compare rigid regis-
tration methods. Given that our method is not designed to pro-
duce effective rigid registration, we have tried to use the bare
results of the first step of our algorithm (genetic rigid registra-
tion) to compare with those obtained by other techniques and,
at the same time, assess the robustness of this rigid registration
step. The overall comparison is presented in Table III. The rather
average results shown in this table might be explained in two
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TABLE II
MAIN RESULTSOBTAINED WITH THE APPLICATION OFOUR ALGORITHM ON THE VANDERBILT DATASET. THIS TABLE SHOWS THEMEAN STOCHASTIC

PERFORMANCE(AND THE STANDARD DEVIATION) OBTAINED ON 11 DIFFERENTEXECUTIONS OF THEALGORITHM

TABLE III
COMPARISON OFRIGID REGISTRATIONERRORSOBTAINED BY DIFFERENTGROUPS ANDCOMPUTED ON THEBASIS OF AGOLD STANDARD TRANSFORMATION

points. First, surface based methods are now known to be less
accurate for rigid registration than methods using voxel-simi-
larity measures. This point could be solved using a segmenta-
tion of the inner cortical bone in both images and adding these
new points into the stochastic point-matching algorithm. Sec-
ondly, unlike other rigid registration techniques reported in this
table, our test report addresses the MRI to CT registration case,

and not CT to MRI (i.e., the more difficult as it needs robust al-
gorithms); this implies that our matching process is to valuate
transformation from some outlier CT skin points that have no
counterpart in the MRI list of points (this biases the distance
measurements). In order to compare our technique with others
on the same basis, we have to submit the CT to MRI rigid reg-
istration results, which is underway.
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Finally, we want to point out that, as noted by West [14],
using numerical-only techniques to assert and validate registra-
tion techniques is not enough. One should always use a visual
assessment and require an expert point of view.

VIII. C ONCLUSIONS

This paper has presented a robust 3-D elastic registration
method which uses genetic algorithms. Its originality comes
from the combination of a structural approach (segmentation
and classification of structures) with a global and robust search
space sampler (two genetic algorithms) and a local optimization
process for accuracy.

A registration example using this algorithm has been de-
scribed. The overall processing time of the elastic registration
on a standard 233 MHz PC is less than 5 min which is a very
good result in comparison with other elastic registration tech-
niques. Moreover, 3-D multivolume renderings asserting the
accuracy of the registration have been presented, and multiple
registrations asserting the robustness have also been achieved.

Moreover, the overall registration process has undergone an
extensive test work on the RREP (Retrospective Registration
Evaluation Project [14]) database of Vanderbilt University
(USA). We carried out a series of tests over seven different
patients (head) while matching MRI-T1, MRI-T1R MRI-PD,
and MRI-PDR images on the corresponding CT dataset. More
than 300 tests of the proposed procedure have been achieved
and allowed us to assert the robustness of the algorithm.

Future work will be related to a more comprehensive com-
parison of the rigid and elastic registration results with those
obtained by means of other techniques. Investigations regarding
the possible segmentation of cortical bone by making use of the
rigid registration are also planned and will probably help us to
totally alleviate the skin elasticity problem.
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