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MR-CT Registration
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Abstract—The aim of this paper is to present an original usage of ~ This paper introduces an original approach to overcome dif-
genetic algotithms as a robust search space sampler in application ficulties of multimodality global elastic registration. A struc-
to 3-D medical image elastic registration. tural description of the volumes and a combinatorial optimiza-

An overview of the standard steps of a registration algorithm is fi I ¢ Ve i ble ti i
given. We focus on the genetic algorithms use and particularly on 10N Process allows us 1o Solve, In a reasonable ime, a nonlinear

the problem of extraction of the optimal solution among the final Problem presenting numerous degrees of freedom. In another
genetic population. We provide an original encoding scheme re- way, our algorithm could be seen as a generalized stochastic

lying on a structural approach of point matching and then point  Hough transform using the principles of natural selection. Thus,
out the need for a local optimization process. We then illustrate the great originality of our approach resides from the particular

the algorithm with a concrete registration example and assert the f tic aloorithm (f dina to th nati f
results with a direct multivolume rendering tool. Finally, the algo- use of a genetic algorithm (from encoding to the examination o

rithm is applied on the vanderbilt medical image database to assert the genetic space of the solutions).
the robustness and in order to compare it with other techniques. After giving some generalities about medical image regis-

Index Terms—Genetic algorithm, global optimization, image tration, in SeCtiP” I, .We will int'deucfe in Section Ill the ge-
registration, medical imaging, pattern matching. ometrical considerations of registration we used for our algo-
rithm and focus (in Section V) on genetic algorithms and global
optimization problems. Section V will detail our registration
method, and a registration example will be given in Section VI.

EDICAL IMAGING of the brain is used by surgeonsFinally, we will discuss the validation of the algorithm on the
and clinicians more and more to make diagnoses or plaanderbilt RREP dataset in Section VII and then conclude with
therapies. Nevertheless, the number of modalities available @ndiscussion on some open issues and future directions.
the amount of data (a set of 2-D slices constituting 3-D im-
ages) make them very difficult to use directly. Moreover, each Il. BACKGROUND

modality gives only alimited kind of information, and very often - ge\era| methods already exist to find a rigid registration be-

two or more modglities of the same patient are used to ‘_Jbtai'ﬂ/\?een two medical images in a reasonable time, and very few
good understanding of the sensed material. Here we will focls, ape to perform elastic registration. The major drawbacks of
on two modalities often used for the visualization of the braianqarg registration techniques are their sensitivity to the ini-
The first one giving good structural information (i.e., good cony positionning of the images, the issue of dealing with mul-

trast for the bones) is the computed tomography (CT) scannghoga| images, and the prohibitive processing time of elastic
whereas magnetic resonance imaging (MRI) provides good jyistration. Since the purpose of this paper is not to give an ex-

formation on softtissues (such as white matter and grey matt¢fdstive description of medical image registration techniques,

~ Afrequent problem arises when images from different modaje refer the reader to the works of Van den Elsen [1], Brown
ities (or when using only one modality but taking images at dify) | avallée [3], and Maintz [4] who have written extensive and
ferent times) need to be compared. The mental superposn@ﬂ'y up-to-date surveys.

is often hard to realize, particularly on 3-D images, and a moreyjqyertheless. we want to point out the main steps of a

practical operation requires computer assistance while matchifigssica registration algorithms. The common ground in regis-
two 3-D images. This leads to the general problem of superimz;ion techniques lies in linear sequential data processing. It
posing two different 3-D images on the same scene (possilygins with an optionadreprocessingf the raw data (mainly
seen by different sensors). Registration refers to finding & Gfrering or segmentation/extraction of interesting features
ome_trlcal tran_sformatlon that corresponds_ any point from oR% the images). Then, it requires the definition ofitaess
3-D image to its homologous on the other image. Furthermog§ tion (measuring the goodness of fit between the target
MRI sensors are known to induce slight distortions on the ifj,5ge and the transformed image) dealing either directly with
ages and very often prevent the user from easily finding a 9ogfLy |evel information or with extracted or intrinsic features.
rigid match (a 3-D translation plus a 3-D rotation). Moreover, the registration requires a model of the mapping
between the two image fieldsvarping model [5]. The more
common approaches make use of a global geometric model.
Manuscript received June 1, 1999; revised November 17, 1999. The warping model might be chosen either rigid (translations,
The authors are with the Department of Image and Information Processipgtations and scaling only) or nonrigid, and either global or
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the fitness function. This step is aptimization procedure wherea; ; &, b; jx, ande; ;. are the coefficients of the trans-
which can be deterministic, iterative, or stochastic, and eithirmation. Pointing out that, 7, and & are either O or 1, the
global or local. Classical local optimization procedures are Hiflimension of the search spa8ds thenL = 3 x 23 = 24,
climbings or iterative searchs, while global optimizations are With such a direct equation (2), it is not easy to express the
often stochastic algorithms like simulated annealing, stochadticundaries of the search space. Nevertheless, the transformed
hill climbing, or genetic algorithms [6] (this last referencdocation of eight points from imagé; to image I, enables
uses a generic genetic algorithm to address the monomodadity indirect description of the transformation involved. Let
elastic registration problem and constitutes a background to tie (respectively, Yy, Z,) be a vector that represents the
algorithm proposed in this article). Finally, the last important (respectively,y, z) coordinates of eight points fron#}
step of a registration algorithm is tliesionand/or interpreta- (x1(¢),y1(¢), 21(¢)), ¢ = 1,---,8 and X, (respectively,Y 2,

tion of the registered images. A classical approach might beZg) be their transformed coordinatés,(7), y2(¢), z2(¢)). Let
isolate the information (such as bone structures from CT scarsdenote byM the 8x8 transformation matrix deduced from
and grey matter from MRI) of each modalities and recomposiee X, Y, andZ,; components and in relation with (2). The
them on a hybrid volumic image. The visualization might theline ¢ of M(X;,Y1,Z;) is

be achieved slice by slice or by using a 3-D rendering tool. [0, 21 (1), 11.(8), 1 (0),

lll. GEOMETRIC CONSIDERATIONS z1(D)y1(2), 21(6)21(4), y1(4)21(2), 21 (y1 ()21 (4)]-

The images we want to register are essentially CT scans and he transformed vectoiXz, Y2, andZ; are given by (3),
MRI images of the head (skul brain) as shown in Section shown at the bottom of the page.
VI. Though the skull is a rigid bone structure, we believe that The computation of the polynomial coefficients, B, C is
a rigid registration is not efficient enough to take into accourerformed by the inversion of the former linear relations. It is
on the one hand, the slight distortions usually induced by MRNportant to notice that, given eight pairs of points (or eight cor-
sensors and, on the other hand, the possible evolution of te&pondences betweéh andr), there exists a unique trilinear
soft structures (e.g., brain). As the registration must be wealkfnsformatiorii” managing the pairing of these points (the ex-
elastic and smooth, we prefer a global transformation oversience of the transformatidfi is ensured if every eight points

local one. and their correspondents are distinct).
Therefore, the aim of our algorithm will be to find pairs of
A. Generic Notations Used homologous points between the two images and achieve global

Given two 3-D imaged (p),p € D1 C IR® andFy(p),p € warping .with the computed 24 coefficignts. .
D> C IR?, registeringF, on F is equivalent to determining  Even if we have pointed out that eight pairs are enough to
the geometric transformatidh* that matches; with £;. 7+ compute the transformation coefficients, a least squares exten-
is globally defined as an applicatidh: D; — IR®, andFy is sion of (3) is possible; this will imply an overdetermined system
defined forp € D; by computation rather than a mere matrix inversion. These proper-
) ties will be used and discussed more in detail in Section V.

0, elsewhere C. Geometric Distance and Fitness Function

The exact definition of " will be givenin Section llI-Bwhilethe  The optimality of the transformatidfi is defined by a criteria

fitness function maximized fdf™* is defined in Section 11I-C.  of distance or fitness. The distané®etween two images is in-
versely proportional to the goodness offfjitof the two images.

B. Global Elastic Transformation T* is then the transformation that maximiz&sor minimizes

A global elastic transformation, simple enough to be cond-for each transformatiof” of the search space with respect to

puted quickly (this is a key point while making use of a genetibe imaged’; and F». Itis similar to choosing™

algorithm where the evaluation of each individuals is the crus« . o

cigl point) and elastic enough to model MRI distortions, is the arg min d(1(F), 1) = algfmax JT (), F2). (4)

trilinear transformatiorwhich is a polynomial warping. This is ¢ estimation of the goodness of fit is not a trivial process.
the extension of a shearing along three axis, and itis defined gy distances exist with different advantages and drawbacks.

p=(z,u.2)0 p =&y, =T(p) A grey-level cqrrelaﬂon is not usable_ here because we need to
101 1 calculate the fithess function many times. Thus, a fast feature

p = Z Z(Gi,j,ka bijges Ciji ) 'y 2 (2) basedfitness function has been chosen. Acommon feature avail-
i=0 j=0 k=0 able on both MRI and CT-scan images is the air—skin interface.

— —_ t

Xy =M(X,Y1,Z))-A A =[a0,0,0,¢1,0,0, @0,1,0, @0,0,1, @1,1,05 ¢1,0,1, G0,1,1, 31,1,1]
= i = t

Y, =M(X,,Y,,Z;)-B with B = [00,0,0,01,0,0,00,1,0,00,0,1,01,1,0,01,0,1,00,1,1,b1,1,1] (3
= - t

Z; =M(X1,Y1,Z,)-C C = [c0,0,0,€1,0,0, €0,1,05 €0,0,1, €1,1,05 €1,0,1, €0,1,15 C1,1,1)
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A preprocessing step addresses the extraction of theses points
from both modalities, providing us with two numerical surfaces.
The computation of a distance between two 3-D images is then
reduced to the computation of a distance between two numer-
ical surfaces.

Let S; (S2) be the surface extracted frothy, (F3), and
dr(p1, p2) be the Euclidean distance between potandps:.
Then the distanéed, betweenS; and.S; with respect to the
transformatiori” can be defined by

1 .
da(S1,8:|T) = cards; pz&; i (de(T(p1),p2)). (5)

At this point, we notice that the creation of a distance map
D,—a 3-D image on the domaif»; where each poinp rep-
resentanin,, s, (de(p, p2))—qgreatly improves the execution
time. The new expression of the distance using a distance map
becomes

1

(1, 52| T) = cards;

> Da(T(pr).  (6)

MEST

However, the distancd,, remains quite long to compute
when the cardinal of; or S, is large (typically within the range
30000-60000). Thus, we have implemented a stochastic varia-
tion of the distancé,,, that we will denotei,. A certain number
(n < cardSy, e.g.,n = 100) of points are randomly chosen in
the setSy, and the distance is computed with this new point set
notedsS7.

1
ds(Sl,SQ | T) = g Z DQ(T(pl))- (7)
p1LCSY
Furthermore, we found that this distanéewas not robust (b)

enough in the presence of outliers, i.e., first, when dealing with

points whose transformed location does not belong to the df#- 1. (&) Distance map. (b) Fitness function mapping wits 4.

tance map, and second, when a large number of points randomly

chosen inS; does not have homologous matchesin(this is  (8) implies thatf = 0. If the »n° points randomly chosen ifi{
a problem resulting from nonoverlapping parts of the volumeg)ave a transformed location with respecftonto S;, thenf is
This is why we introduced a fitness functigifiltering on the maximal and equals 1.

large values of the distance and keeping the relevant informa-

tion; in doing so, the sum is only performed on randomly chosen IV. GLOBAL OPTIMIZATION USING A GA

points p; whose transformed location belongs to the distance__, . L . . ,
map (these are? (n® < n) points that might be seen as part of This section intends to present the genetic algorithms (GA's)

a subsef?). The corresponding fitness is given by the relatiorf}S a global optimization techr_uque. After a short _overwew,of
ship he general functioning, we will focus on two particular GA's

used (those working on real parameters and those working on
1 (DT (p1)))? indexed sets) and then we will discuss some issues regarding

f(Slv 52 |T) - m :SO €xXp — 72 . (8) the GA’s.
p1CS5]

Fig. 1 shows the application of the fitness function [the paft: Basics of a Genetic Algorithm
under the sum of (8)] on a distance map. The image in Fig. 1(a)Genetic algorithms are adaptive generate-and-test algorithms
is a slice extracted from the original 3-D distance map of a MRising the principles of natural population genetics and natural
volume, and the image in Fig. 1(b) features the usage of (8) selection mechanisms. The main idea is to encode the parame-
the same slice withr = 4. ters of a problem in a chromosome as a list of bits (see Fig. 2(a)
If no randomly chosen points af are transformed close whereL parameters with a fixed lengthare encoded). We then
enough (depending on the value ®f usuallyc = 4) to S», consider a population of chromosomes (potential solutions) and
N _ , . letthem evolve with respect to three rules (we refer the reader to
Note that the term distance used here is not a real mathematical dlstaTﬁ,for more details): 1) the selection/reproduction that evaluate
because the expression does not satiffy,b) = d(b, ). We only have
d(a,a) = 0 andd(a,b) > 0. the performance of each individual and duplicate only the good
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(a) Chromosome Enconding cession of six real numbers (three for the translation and three
for the rotation). Furthermore, we introduced a repartition con-
[iz][Li] L | straint on the population over the search space using the prin-
ciple of the Latin squares [8]. The latter ensures that, from the
el S 'eie'c{.i[);'"'df}s_p}i]?:g"“: (b) Selection initial population elaboration to the final genetic population, a
Population Function Population certain percentage of the population is within a subset of regions

of the search space. In fact, we control that the projection of the
population over each of the six axes of the search space is uni-
form in the sense that a minimum amount of points is present in
each subdivision of the parameter space.

This new constraint entails a redefinition of the mutation and
the crossover operators. The new mutation is bound to a cell of
the search space, and thus it is considered to be a local search.
This new mutation operator is therefore more efficient for the
fine tuning of the good solutions (faster and more accurate con-

| vergence) within a cell because its scope is limited to a small

1 area. Moreover, we notice that this scope limitation of the mu-

tation operator is only possible because each cell of the search

| - space is reachable via the succession of crossover operations.
B Resulting Population; cancerning the crossover operator, the swapping of entire pa-

Final
Population

. (c) Mutation

\

rameters between two chromosomes does not modify the dis-

tributions of the projections over the axis of the search space,
R RREEE . thus our new constraint does not imply a modification of our

Fig. 2. A complete GA cycle from: (a) the chromosome encoding to (b) tefOssover operator.

genitors selection, (c) the mutation (random search space exploration), and (dMoreover, we ensure a dynamic control of the homogeneity

the crossover (hereditary conservation of parameters). of the population (necessary because of the selection operator

that might disturb the chromosome’s distribution) by moving

_ _ _ some chromosomes from over-represented regions to deserted
one (depending on a selection scheme) [Fig. 2(b)]; 2) the Mygions.

and which is responsible for the search space exploration [Rige uniform one has been chosen. For a selected pair of chro-
2(c)]; and 3) the crossover which swaps the genetic material bgosome to undergo the crossover modification, we look itera-
tween some elected couples of chromosomes [Fig. 2(d)]. Afigfely through the genes (parameters) of the chromosome and
a few generations, and because of the nature of the exploraiiitige whether or not to exchange the values of the genes (with
of the search space and the suppression of the bad individuaégpect to a random exchange rate). Thus, we give up the idea
the overall performance of the population increases. of a crossover point which usually is order-dependent. In addi-
Itis important to notice that a postprocessing step (local opfjpn, we have experimented with some evolutionist operators,
mization) is essential for the accuracy of the algorithm. Actually,ch as the hybrid simplex method used in [9], without success.
even if a GA s efficient enought to avoid being trapped in locglye noticed that making use of simple operators (like mutation
extrema, it also a slow convergence to the optimum solutiogg uniform crossover) a great number of times is more efficient
Thus, a GA might always be considered a tool giving a goqan using more complicated operators (such as the evolutionist
approximation of the final solution and might always reqUirSperator) which are slower.
the use of a local optimization procedure. Moreover, we Wantz) GA on Indexed SetsThe second GA we used does not
to point out that it is more meaningful to use the informatiopyok for integer nor real parameters but for eight pairs of points
included in all the chromosomes of the final genetic populatighich, given (3), is an equivalent problem. It works on an in-
rather than only make use of the few best elements. dexed set (unidimensional search space) where a potential solu-
tion (a chromosome) is a combination of eight different indices.
Thus, the encoding is directly a combination of eight different
As we will see later, for our registration algorithms we usethdices. The mutation corresponds to changing one index by
two kinds of GA. The first one, used to achieve an initial rigidnother index of the search space, while the crossover simply
registration, works directly with real parameters, and the secooohsists of swapping some index between two chromosomes.
one works on an indexed search space. The only constraint added to the mutation and crossover opera-
1) GA with Real ParametersFor a rigid registration, the tors is a set of coherence tests on the chromosomes. As we will
parameters we are looking for are real numbers representingeg in Section V, an index represents a couple of points from
3-D translation and the angles of a 3-D rotation (a total of stke target image to the registered image. Thus, a chromosome
real numbers). We could have used a classical GA working with coherent only if the 16 points designated by the eight cou-
strings of bits that represent numbers, but, in order to avoid saphes correspond to eight distinct points on the target image and
pling problems, we directly encoded a chromosome as a seght distinct points on the registered image. So, we check that

|
|
|
|
'
'
|
|
|
|
|
(
|
'
‘

B. Genetic Optimization and Image Matching
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Preprocessing: h use the Gauss_ian and me_lximum curvatl_Jre). We define a clas-
CT | Segmentation, Classification| |- MRI sification functionC returning the belonging class of a point.
scan Distan’ce Map P If p; andps, two points fromS; and.S,, have a similar local
~/ curvature (for instance, the same Gaussian curvature sign), then
m C(p1) = C(p2). Moreover, we compute from the second image
Classifiod (Classified] | (the MRI volume) a Euclidean distance map Which isa vqlume
points set hmims Seq Dlﬁ:nce where the value of each voxel represents the Euclidean distance
CT surface | | MRI surface P to the numerical surfacg, (e.g., see [10] for the computation of

I the distance map). For more details on the functioning of these
preprocessing algorithms, we refer the reader to [11].

3 steps registration . ) .
parameters Then a three-step (see Section V-A) algorithm computing the
computing parameters of the transformation is achieved. Finally, the image

I warping is performed in the last stage (Section V-B).
[ | 24elastic j We would like to remind the reader that the underlying idea

registration parameters . . . .

I v behind our robust registration process is to extract two sets of

MRI points belonging to the air—skin interface of each images and use
registered 0n<(—[ Image reconstruction J them to perform a global rigid matching (step 1) that initializes a

CT-scan robust point-matching (steps 2 and 3) algorithm. The robustness

of the point-matching algorithm is ensured by a good filtering
Fig. 3. General synopsis of the registration algorithm. of misleading point associations (the outliers) and then by the
use of a GA as a smart search space sampler (step 2) further

a mutation operator or a uniform crossover does not introdu%plored by a local search optimization (step 3).

duplicate origin or destination points. . . .

Therefore, the GA working on the indexed set is not used éé A Three-Step Robust Registration Algorithm
a stand-alone optimization tool. It is introduced here as a smarl) Global Rigid Matching:A global rigid registration is
search space sampler that will work in synergy with a local optised to initialize the robust point-matching algorithm. We
mization tool. Thus, the GA will provide a valuated sampling ctSSume that the elasticity of the transformation we are looking
the search space to the final local optimization process and vifif iS weak because the brain skull is a rigid structure and
be responsible for the robustness, while the local optimizati§cause the distortion involved by the imaging devices is not

improves the accuracy of the registration process. very large. Thus, a rigid matching, even if not extremely accu-
rate, is a good initial guess of the final transformation. On the

C. Limits of the GA's basis of s.uch a _rigid matching (along_ with its own confidence
factor which relies on the median distance between the two
The main drawback of a GA is the risk of premature convefumerical surfaces and with respect to the rigid transformation
gencetoa local extremum, sometimes due to a bad initializatipﬁrameters)’ one may eleminate aberrant associations of
of the search space. This is why we use a dynamic control @dnhomologous surface points.
the search space (with the Latin squares principle). The choicens stated before, the rigid transformation parameters are six
of the stopping criterion is also a main issue. How long mustyigal parameters, or a 3-D translation vector and three rotation
take to have a good accuracy quickness ratio? Knowing thegfyles. These parameters are determined by a GA working di-
limits of a GA, we see that it is almost mandatory to connegéctly on real numbers (see Fig. 4). Note that the search space
it to a local optimization process. Thus, a GA can be seen jg@hounded to plausible intervals (we choose a maximum trans-
a parser of a search space looking for a set of gmgiinafur-  |ation vector and look for rotation angles between and-).
ther exploited by a nonstochastic optimization algorithm. Atthis 2) Smart Sampling of the Point-Matching Search
point, we therefore consider a GA not only as a robust optimizgpace: The 24 parameters of the global trilinear transfor-
tion technique, but also as a smart search space sampler. mation we are looking for are fully defined by the knowledge
of any eight points from the 3-D target surface and their
correspondents from the 3-D surface to register. Thus, we
use a point-matching algorithm that will try to determine the
This section presents the overall approach used to solve tdwerespondences between the points of the two images. Since
registration between a CT scan and an MRI image of a humtdne size of the two surfaces is too large to attempt a direct search
head. The chart in Fig. 3 describes the different parts of thenong all the possibilities, we construct a list of possible point
process that will be detailed in the next paragraphs. The figgirs (£) using the best rigid registratiofi” with a median
stage addresses the acquisition of the images and the preprosr distancel,,,.q and the class partitioning. This results in
cessing for the extraction of the interesting features (external the following rule: a poinp; from the.S; and a point, from
terface air/skin). This leads to the extraction of two sets of poinfs are associable if and only if; andps belong to the same
(S1 and Ss), one for each modality. Topologically, the sé&ts curvature class and satisfy (9) whetg. is the median error
and S, describe numerical surfaces, and thus it is possible distance betweery; and .S, using the rigid transformation
compute for each element of these sets the local curvature (Ve (see the notation used in Section IIl). We set a maximum

V. REGISTRATION PROCEDURE
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of index giving the elastic transformation, but rather to sample

oD (b) cT the search space (set of octet of index) by keeping elements of

(a) | Search C'l‘j;?;f;i:d the search space that are present in the final genetic population.
101 1 1 . . .

Space f,}f;‘iframf‘”ma“"“ In doing so, we are using the GA as a robust stochastic sam-

pler of a wide search space giving a new reduced search space
_________________________________ usable by a local (deterministic) optimization process (step 3).
The overview of the second step is similar to Fig. 4 where the
search space shown in (a) is ndi®, the transformation model
shown in (b) is the elastic trilinear one, the chromosome en-
coding shown in (c) is a set of eight different indices (a point
from £8), and finally the output of the algorithm shown in (d)
is the final genetic population (set of chromosomes).
ngce 3) Step 3: Fine Tuning the SolutiorlJsing directly the best
Map element of the final genetic population is not considered as op-
timal. Each element of this population contains a significant
piece of information. Thus, we used an algorithm managing the
extraction of the information contained in each chromosome.
s Chromosome ”_”"TZRXFYRZ)( ) We know that eight is the exact number of point pairs required
Ry Confdene for the computation of the 24 parameters of the global trilinear
transformation. Nevertheless, with a greater number of point
Fig. 4. Rigid registration process using a GA. pairs, it is still possible to compute these 24 parameters, with
the difference being that using eight pairs results in an interpo-
S, lation and using more pairs result in an approximation. Thus,

; we see that using a greater number of couples will help to filter
/

Stochastic
Fitness
Function

Genetic

Operators

1

e e e e e —— =

K out the noise inherent to the segmentation of the surfaces and
give the possibility of using a larger part of the genetic popula-
tion. This is in great part responsible for the robustness of our
registration algorithm.

The post-analysis consists in starting from the best eight pairs
found by the GA, and dynamically looking for other pairs that
improve the fithess when merged to the previously selected pairs
until no other pair is able to significantly increase the fitness.
Because the order in which the pairs are merged to form the
Fig. 5. The point pair selection according to the curvature class and the rigifal solution is important, it is sometimes possible to again im-
registration mean error. prove the final solution by removing some of the selected pairs.

Therefore, a second pass in the postanalysis algorithm consists
allowed distance,,... as the double of the median distance t8f Parsing the selected pairs and checking if a removal increases
eliminate the outliers. A threshold value of 2 has been choskt overall fitness. Achieving this two-pass process, the infor-
as a good compromise between the filtering of outliers and tAEtion available in the final genetic population is quickly (typ-

Positive
Curvature

Ne gatlve
Curvature

search for elastic transformations ically a few seconds) and fully exploited.
The synergistic execution of these three steps (rigid registra-
de(T"(p1),p2) < 2dmed = diax- (9) tion, search space sampling, and local optimization) is the core
of the robustness and the accuracy of our optimization algo-
Thus, the sel is defined by rithm.
L ={(p1,p2) € S1 x S2/C(p1) = C(p2) B. Image Reconstruction and Fusion
andde (1" (p1),p2) < 2dmed }- (10) Once the registration parameters are computed, one has to

evaluate the quality of the registration. Whereas several numer-

Fig. 5 illustrates the idea of the point pair creation given twical methods exists to estimate this quality, we use a visual as-
classified point sets, a rigid transformati@i, and a median sessment of the registration. After achieving a direct warping
distanced,,,.q. On this drawing, the only points that can be aswith respect to (2), we have the target image(as defined in
sociated withp; from S; are the points noted andd because Section Ill-A) and£s, which is the warping of; aligned with
they belong to the same curvature class (the class of positive On the one hand, the visual assessment could be done slice
curvature in this example), and they are in the same neighbby- slice with, for instance, a superposition of the bone struc-
hood (with respect to th&" transformation). tures, extracted from the CT scan, onto the soft tissue from the

We then use a GA algorithm to look for eight pairs through thglRI image. On the other hand, a direct multivolume rendering
index set(£) resulting in good elastic transformation. The pur(DMVR algorithm presented in [12]) can be used to evaluate the
pose of this second step is not to directly determine the best odtg¢rsection and the union of the fuzzy surfaces of our volumes.



132 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 4, NO. 2, JUNE 2000

and MRI images. After a quick presentation of the raw data, v
will discuss the different registration steps, ranging from se
mentation to the computation of the parameters and the vis

assessment. ( w
| 8 A

A. Data Sets

The data we are working on are a CT scan and an MRI volur —
of the head, whose physical dimensions are @&86x91) (l \h

VI. RESULTS A REGISTRATION EXAMPLE - S e
We propose a registration example achieved on real CT sci [ \ L ‘ \ ( \
/v | & \ \ ). -~ )

voxels for the CT scan and (25@56x 68) voxels for the MRI.
It is interesting to notice that the voxels are noncubics and he
a different size for both images (the scope of the CT scan

(232.82¢232.82<165.81 mm), and (265.45265.45¢141.06 ( j ( 4
/ A

mm?) for the MRI volume).
Our algorithms are able to deal with slightly anisotropic re¢
ular grids. There is no need to provide isotropic images whit

prevent a resampling stage. , .
Fig. 6 presents 3-D renderings of the initial CT and MR vol / \ / 1 / \
umes. Note that the artifact volumes at the back of the CT ima DR : -
are part of the raw images. These volumes could have been

moved in the segmentation step in order to facilitate the reg — %

tration (the fithess computation). Nevertheless, we have cho:s \

to keep these outlying structures in order to assert the robustr (

of our registration algorithm.

The segmentation step will not be addressed in this paper

; ; ; ; ig. 6. Direct volume renderings of the initial CT and MR-T1 images of
(See [11])' We will consider already segmented Images, 1.€., t\&g Vanderbilt dataset. The seven top images (patients) correspond to the CT

point setsS; and.S», the distance map., and the curvature modality while the seven bottom images relate to the MRI modality of the
classificationC as the inputs of the registration algorithm.  respective same patients.

B. Rigid Registration whenever possible, to the differential geometry classification).

The first step of our algorithm is the establishment of a glob&Auation (9) gives a confidence interval.. = 4.3 mm.
approximation of the matching through a rigid warping. With With the 35 866 segmented points on the MRI image and
the images used, this step is achieved in an average of less 63 710 points on the CT scan, more than a million couples
20 s (the PC used ran Linux 2.2.7 on a Bi-PentiumPro 233 Migatisfying the previous criterion are created in less than 4 min
with 192 Mo EDO RAM). The quality of this registration is ap_without using_the curvature information. This step is th_e most
preciable on Fig. 7 (top). Table | summarizes the results obtaine§Y consuming part of the algorithm. We note that using cur-
for each step of the algorithm. vature classes improves the rapidity of the algorithm; Table |

This rigid registration step requires the tuning of some p&hows the computation time and the registration quality with
rameters, mainly for the genetic algorithm. We have studiéf'® curvature class (i.e., no classification), then with three cur-
the influence of the genetic parameters and noticed that, if théjfures classes. o o
were chosen in an acceptable (standard) range of values, they/e then apply the second GA which will look for a minimal
only interfere with the processing time. To be precise, we ha§ét of matching points. As stated above, this step is considered to
chosen a population of 500 chromosomes, evolving over 186 @ smart search space sampling because it transforms a search
generations. The mutation probability was set to 1% while tff@ace into another search space of the same kind with only the
crossover probability was tuned at 80%. Finally, we have takEg/évant points.

n = 100 stochastic points for the computation of the goodnessFor this GA, we have used the same parameters as for the
of fit [see (7) and (8)]. first GA except for the number of points for the stochastic fit-

The physical values of the rigid transformation found is §€SS computation (here = 200), and it ran for about 51's.
3-D translation vector of11.30,22.49, —15.86] in millime- The best chromosome gives a stochastic fitness of 79.5%. This
ters and the three rotation angles (along teY, Z axis) CGA has 500 chromosomes of 8 couples each. Thus, ithad 4 000
[0.135,0.093, —0.072] in radians. potential couples to evaluate. After the convergence of the GA,

only a hundred different couples exist in the final population and

C. Elastic Pomt'MatChmg 2Classification was made on the Gaussian curvature value of crest-line points.

The knowledge of the rigid registration fithess (74_9%) affour classe_s are set up. A class with large po_sitive Gaus_sian curvature, one v_vith
large negative Gaussian curvature, a class with almost nil curvature, and a reject

lOYVS us _to compute the Co_nf.'dence mterva_l for the couple crgas for other points. The first three classes generally represent 50% of all the
ation (with respect to the rigid transformation parameters anjnts of the segmented surfaces, while the reject class is not used.
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Fig. 7. Visual assessment of the median registration achieved on patient 1,
from MR-T1 to CT. The fuzzy intersection renderings denotes a good overall
alignment of the external surfaces, with, as predicted, a better registration in the
elastic case than in the rigid approximation case.

CT Bone + MRI (Slice 30)!

TABLE |
GLOBAL RESULTS OF THEREGISTRATION EXAMPLE
Fig. 9. (a) Rigid and (b) elastic (without curvature information) registration.

Step [ CPU Time | TFitness (%) | Figure
Segmentation < 2 mn - 8 . . .
Rigid Reg. 6 s 71909 (£3.6) 9(a) the same volumes with the same registration parameters. In ad-
Without curvature classiication dition, we have studied the influence of the genetic parameters
Couples Gen. 3 mn 41 B 3 on the behavior of the algorithm (accuracy, velocity and robust-
glastic {Best) Si s 23.5«15 511.191) )(h; ness). This study has demonstrated that the choice of the genetic
ine tuning s | 80.810 (£0.872) ¢ i i
Overall Proc. T 36 s AT 5() parameters has a negllgblg influence on the accuracy, except for
= - — very degenerated values (i.e., almost no mutation and crossover,
With three curvature classes .. . . .
Couples Gen. 16 s - 3 too few genetic iterations, or too small genetic population).
Elastic (Best} 48's | 79.126 (£2.526) -
Fine tuning . } s | 81.117 (:|:2.6002 10 E. Visual Assessment
Overall Proc. Imn35s 81.117 10

Figs. 6-8 summarize the results obtained at the different im-
portant steps of the algorithm. It is important to appreciate the
constitute the new search space of the third step (local optimizgformation given by the multivolume renderings, especially by
tion). the intersection of two volumes. If two volumes are misregis-
tered, it is obvious that the intersection will be noncoherent or
contain some holes. Fig. 6 presents the data before registration,
Finally, we ran the local search on the final genetic populand Fig. 7 (top) presents the result of the rigid registration (step
tion (new search space). Given that we have a small search spgcdwo different views are presented: the volume intersection
(for the example used we have a hundred of couples), the fiore the left, and an axial slice fusion on the right. The fusion is
tuning is very fast. The final fithess obtained is roughly 80%n overlay of the bone structures (in green) extracted by thresh-
to 82%, depending whether we used or not a Gaussian curglting on the CT image (slice 30) and the grey-level MRI infor-
ture classification, which is not very relevant because of tmation (same slice of the reconstructed image).
stochasticity of the fithess. Better appreciations might be doneFig. 7 (bottom) shows the results of the elastic registration
on Figs. 7 (bottom) and 8. achieved without using a curvature classification. Finally, Fig. 8
As shown in Table I, statistics have been conducted to assgrows the optimal elastic registration achieved using three cur-
the accuracy of the algorithm. On this table we show the starature classes. The presence of holes at the rear right side of
dard deviation of the fitness value for about 20 registrations tife intersection volumes denotes a small misregistration of the

D. Fine Tuning of the Solution
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Fig. 10. Elastic registration using three curvature classes.

external surfaces, but a good alignment overall of internal strudR images because the contrast around the air—skin region

tures (see slices on the left of the drawing). was not sufficient to allow a good segmentation. Fig. 9 shows
The overall registration time (less than 5 min on a 233 MHdirect volume renderings of the seven CT scan volumes and the

PC running Linux) is very good in comparison with the compuseven T1-weighted MR volumes of the dataset.

tation time obtained with other registration techniques (20 mn The registrations of the RREP images addressed in this sec-

on a DEC ALpha Workstation for Thirion’s Maxwell daemortion were achieved without using any local curvature informa-

[13], and 9 h on a MASPAR). tion because the slice spacing was not accurate enough to enable

use of a differential geometry.

VII. V ALIDATION ON A MEDICAL DATASET

In order to assess the robustness of the algorithm and to Col?r)h_MethodoIogy and Results

pare with existing methods, we have applied the registration onl) Elastic Validation: On the one hand, for each of the seven
the Vanderbilt RREP dataset. After a brief presentation of thiatients of the database, we have computed 11 elastic registra-
dataset, we will explain the employed methodology; furthetions, and then we have analyzed the stochastic performance of
more, we will discuss the validation of the elastic registratiopach registration from steps 1 to 3. For each registration, we
and then compare the rigid registration with existing methodsonsidered the CT image as the target image because less dis-
tortions occur during the acquisition process of these images
A. The RREP Dataset and thus are more reliable with respect to the true topology of

RREP stands for Retrospective Registration Evaluati(t)he head. In sum_mary,>411 reg|_strat|0ns_are achieved for each
of the seven patients. The main numerical results are reported

E)r%lgg Srie é_lré_l']\ﬂsrr??sr; azizallzzhﬁrliezrﬂ:gg 'E dg;;g?jﬁ} Table Il. This table first points out the fastness of the algo-
P 9 q y | Bm along the different steps (the CPU times are presented in

: . . r
groups. The idea is to provide a shared database of CT an ; :
. seconds). Then, the stochastic performances denote an improve-
MR image that each group can download and use to compute = ; : i :
s . : X . ment between the rigid registrations and the final results which
a rigid registration (PET images are also available but are ng ) . . )
. . : mean that elastic registration was needed. The standard devia-
of concern for our algorithm because the air—skin segmentation . : . :
: ) . o : tion (based on 11 registrations) is rather small on all cases which
of these images is particularly difficult). The latter is then

compared with a gold standard reaistration obtained by AEaS that all the registrations are quantitatively comparable.
pare 9 ' 19 yI\7'floreover, we want to point out that we have realized a visual
prospective, marker-based technique.

Amongst the images of the database, CT and MR coup ssessment of the median results (the fifth out of the_ll results).
. . . ese visual assessments made on the same basis as those of
from seven different patients are available. For almost ea

X . Co . o ection VI have shown a good overall alignment of the images
patient there exist six different MR images (T1 welghtea§f each patient (see also Fig. 10 presenting median MR-T1 to

T2—we|gr_1ted, Posnr.on Density, andl three other obtained W'trbal' rigid and elastic registration achieved on the first patient of
geometrical correction of the three first ones), and one CT—sc?ﬁ

For more information, we invite the reader to visit the Van- € database).

derbilt home pagé.Nevertheless, notice that the VOI covered 2) Rigid Results Comlparlsc')nOn the other hand, th? main
. urpose of the Vanderbilt project was to compare rigid regis-

by each volume of the database varies greatly. Some volumes: . . .
tration methods. Given that our method is not designed to pro-

only correspond to the top of the brain whereas some Oth(Jeurce effective rigid registration, we have tried to use the bare
maps show from the nose to the top of the head. This feature IS 9 9 ’

. . .., results of the first step of our algorithm (genetic rigid registra-
particularly important to asses the robustness of the algorithpm; : ) )
) ) ijon) to compare with those obtained by other techniques and,
Moreover, note that we only used fpur kinds of MR images far : L . .
) X . . atthe same time, assess the robustness of this rigid registration
our different registrations. We have not used the T2-weighté : . .
Step. The overall comparison is presented in Table Ill. The rather

3[Online]. Available: http://iwww.vuse.vanderbilt.edu/~jayw/ average results shown in this table might be explained in two
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TABLE I
MAIN RESULTS OBTAINED WITH THE APPLICATION OF OUR ALGORITHM ON THE VANDERBILT DATASET. THIS TABLE SHOWS THEMEAN STOCHASTIC
PERFORMANCE (AND THE STANDARD DEVIATION) OBTAINED ON 11 DIFFERENT EXECUTIONS OF THEALGORITHM

# | modality stochastic perfor- | CPU stochastic perfor- | stochastic perfor- | CPU
mance (step 1) in | time (sec) | mance (step 2} in | mance {(step 3) in | time (sec)
percent step 1 percent percent step 243
MR TI1 91.92 (1.00) 15.7 94.89 (0.19) 96.69 (0.30) 99.2
1 MR TI1R 94.31 (0.31) 18.5 95.77 (0.16) 97.08 (0.21) 96.6
MR PD 89.51 {1.30) 5.6 91.95 (1,20 93.97 (1.09) T2
MR PDR 95.45 (0.76) 15.5 95.81 (0.42) 97.23 {0.39) 94.2
MR T1 87.47 (2.69) 15.1 88.33 (1.11) 91.52 (1.46) 5.6
2 MR TIR 86.39 (2 57) 15.0 85.92 (2,05) 89.81 (1.69) L9
MR PD 87.27 (1.99) 15.1 87.71 (1.39) 90.36 (1.30) 739
MR PDR 88.73 (2 37) 15.2 88.13 (0.78) 90,56 (1.07) 65.8
MR T1 T7.42 (3.20) 16.0 77.21 (3.05) 81.84 (3.60) 62.8
3 MR TIR 76.18 (3.96) 112 7721 (1.58) 31,68 (z 56) 53.8
MR PD 73.90 (5.11) 16.5 71.92 (1,76) 80,15 (1.92) 63.9
MR PDR 78.84 (4.15) 16.6 74.26 (2.93) 78,87 (3.09) 61.1
MR TI 82.69 (3.01) 14.0 85.33 (1.51) 89,05 (1.53) 61.1
4 MR TIR 83.07 (2.12) 14.2 84.88 (1,51) 88.80 (1.71) 63.1
MR PD 83.78 (3.32) 13.7 81.92 (1,91) 88.10 (1.42) 61.6
MR PDR 84.19 (1.94) 13.9 82.94 (1,37) 87.12 (1.66) 63,1
MR T 85.40 (2.13) 18.3 88.99 (1,14) 91,75 (1.12) 85.5
3 MR TIR 86.78 (2.73)- 18.5 89.19 (1,03) 91,84 (1.12) 91.4
MR PD 83.44 {0.00) 18.0 88.48 (0.96) 91,84 (0.82) 92,6
MR PDR 85.58 (2.38) 18.7 88,01 (1,60 90,43 (1.57) 71,9
MR T 84.45 (3.50) 17.6 84.95 (1,90) 88,36 (1.99) 66,2
6
AR PD 83.39 (1.91) 18.0 82.60 (2,06) 86,56 (2.19) 67.3
MR PDR 88.16 (2.38) 17.5 85,13 (1.33) 88.09 (1.41) 65,5
MR TI 87.16 (1.34) 16.3 91,58 (1,41) 93.92 (1.07) 87.1
7 MR TIR 85.70 (0.91) 16.2 88.68 (1,10) 91.79 (1.65) 84,1
MR PD 89.00 (2.11) 16.0 91,81 (0,735) 94,00 (O 69) 89,7
MR PDR 91.36 (1.30) 16.0 93.33 (0.61) 95.32 (0.52) 99.0
TABLE Il

Method CT to MR DP CT to MR DPR CT to MR T1 CT to MR TIR

author mean  med. max. | mean med. max. | mean med. max. | mean med. max.
Bariliot 2.38 1,92 6.93 2,28 1.71 3.95 2,13 1.62 6.35 1.91 141 5,86
Collignon 2.04 2.09 3.83 0.89 0.81 2.50 1.90 1,53 6.69 1.03 0,72 3.81
lsen 2.54 2.01 6.55 1.69 L.11 5.32 2,12 1.63 6.05 1,22 0,93 2.61
Harkness 10.86 3.2 49.60 9,99 3.06  45.86 10,46 3.39 51,81 11.68 3.38 18,26
Hemler 314 237 1045 1.78 1,66 3.69 2.68 1.37 10,97 1.08 1.00 2.12
Hill 2.00 1.94 1.05 0.89 0.73 2.36 1.36 1.17 2.78 0.87 0.71 2.35
Hsu 1.86 1.67 5.07 147 1.6 2.72 2,73 251 7.05 243 2,38 5.78
Huang 2.16 2.01 5.03 1.13 1.01 2.93 1.81 1.64 187 1.66 1.52 3.26
[Luo 1.76 1.71 3.56 1.08 0.97 2.66 1.22 1.10 2.99 15 1.03 2.81
Maintz .41 415 18.97 3.78 297 10.15 5.68 3.05 12.85 3.05 4194 1-4.33
Malandain 10.41 4.00  59.00 10.22 104 62,66 10.08 .32 6113 .13 542 6061
Nikou 1 3.06 2.60 5.80 3.00 2.95 5.35 2.72 2.56 6.13 2.45 2,95 £.59
Nikou 2 2.67 2.31 6.18 2.01 1.86 5.07 1,93 1.50 1.36 175 1.43 3531
Noz 6.89 780 13.86 5.93 161 11.57 158 3.32 10.39 171 3.10 9.61
Pelizzari 1.96 1.93 4.30 2.16 2,04 165 2.79 2.74 T.27 2.3 2.23 3.95
Robb 7.06 A6 22,19 6.71 S8 22011 6.73 52210 2107 (67 590 2221
Rouet 1.36 3.8% 15.25 V.27 L8 9.97 3.39 2.75 12,48 5.60 152 20,31
Thevenaz | 2.01 2,04 156 0.85 0.83 1.7l .69 1.-40 16T 1.0 0.95 4.02
Thevenaz 2 194 1.69 5.19 1S 1.07 162 1.72 1.56 598 LOT 0.81 LIS
Thevenaz 3 2,15 1.93 118 (.99 1.01 1.61 1.61 1.03 L7 1.05 .89 3.1

COMPARISON OFRIGID REGISTRATION ERRORSOBTAINED BY DIFFERENT GROUPS ANDCOMPUTED ON THEBASIS OF AGOLD STANDARD TRANSFORMATION

points. First, surface based methods are now known to be lassl not CT to MRI (i.e., the more difficult as it needs robust al-
accurate for rigid registration than methods using voxel-singorithms); this implies that our matching process is to valuate
larity measures. This point could be solved using a segmenti@nsformation from some outlier CT skin points that have no
tion of the inner cortical bone in both images and adding theseunterpart in the MRI list of points (this biases the distance
new points into the stochastic point-matching algorithm. Semeasurements). In order to compare our technique with others
ondly, unlike other rigid registration techniques reported in th@n the same basis, we have to submit the CT to MRI rigid reg-
table, our test report addresses the MRI to CT registration castration results, which is underway.
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Finally, we want to point out that, as noted by West [14], [5] G. Wolberg,Digital Image Warping Los Alamos, CA: IEEE Com-

using numerical-only techniques to assert and validate registra- Puter Society Press, 1990. _ o
. . . . 6#5] J.-J. Jacq and C. Roux, “Registration of 3-D images by genetic optimiza-
tion techniques is not enough. One should always use a visu tion.” Patt. Recognit. Lettvol. 16, no. 8, pp. 823-841, Aug. 1995.
assessment and require an expert point of view. [7] D. E. GoldbergGenetic Algorithms in Search, Optimization, and Ma-
chine Learning Reading, MA: Addison-Wesley, 1989.
[8] H.J.RyserMathématiques Combinatoirelslonograph. Dunod, 1969.
VIIl. CONCLUSIONS [9] J.Yen,J.C.Liao, B. Lee, and D. Randolph, “A hybrid approach to mod-
: : . . eling metabolic systems using genetic algorithm and simplex method,”
This paper has presentgd a ro_bust 3-D elgsyc reglstratlon presented at the SMC'95, 1995,
method which uses genetic algorithms. Its originality comes10] T. Saito and J. I. Toriwaki, “New algorithms for euclidean distance trans-

from the combination of a structural approach (segmentation formation of an-dimensional digitized picture with application®att.

TR : Recognit, vol. 27, no. 7, pp. 66-88, July 1994.
and classification of structures) with a global and robust searc J.-J. Jacq and C. Roux, “Automatic detection of articular surfaces in 3-D

space sampler (two genetic algorithms) and a local optimization ~ image through minimal subset random sampling,Cemputer Vision,
process for accuracy. Virtual Reality and Robotics in Medicine. CVRMed'®V. Ayache, Ed,

; ; : ; ; B Grenoble, France: Springer-Verlag, Mar. 1997, vol. 1205, pp. 73-82.
A registration example using this algorithm has been d(:"[12 —, “A direct multi-volume rendering method aiming at comparisons

scribed. The overall processing time of the elastic registration ~ of 3-D images and models|EEE Trans. Inform. Technol. Biomegol.
on a standard 233 MHz PC is less than 5 min which is a ver 1, pp. 30-43, Mar. 1997.

. . . . . . 113] J.-P. Thirion, “Fast non-rigid matching of 3-D medical images,” INRIA
good result in comparison with other elastic registration tech™™" g\ "\ il olis Tech. Rep. 2547, May 1995.

niques. Moreover, 3-D multivolume renderings asserting thgi4] J. west, J. M. Fitzpatrick, M. Wang, B. Dawant, C. R. Maurer, R. M.

accuracy of the registration have been presented, and multiple Kessler, and R. J. Maciunas, “Retrospective intermodality registration

registrations asserting the robustness have also been achieved. iﬁfﬂgﬂgg;giﬁ?ﬁfﬁg ;ﬂjgzi;ﬁg”&%&iﬁg@%ﬁtigo\g’sﬁg_’
Moreover, the overall registration process has undergone an  151-160, Mar. 1997.

extensive test work on the RREP (Retrospective Registration

Evaluation Project [14]) database of Vanderbilt University

(USA). We carried out a series of tests over seven different ]

patients (head) while matching MRI-T1, MRI-T1R MRI-PD Jean-Michel Rouetreceived the degree from the Ecole Nationale Supérieure
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