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Efficient Model-Based Quantification of Left
Ventricular Function in 3-D Echocardiography
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Abstract—Quantitative functional analysis of the left ventricle
plays a very important role in the diagnosis of heart diseases. While
in standard two-dimensional echocardiography this quantification
is limited to rather crude volume estimation, three-dimensional
(3-D) echocardiography not only significantly improves its accu-
racy but also makes it possible to derive valuable additional infor-
mation, like various wall-motion measurements. In this paper, we
present a new efficient method for the functional evaluation of the
left ventricle from 3-D echographic sequences. It comprises a seg-
mentation step that is based on the integration of 3-D deformable
surfaces and a four-dimensional statistical heart motion model.
The segmentation results in an accurate 3-D+ time left ventricle
discrete representation. Functional descriptors like local wall-mo-
tion indexes are automatically derived from this representation.
The method has been successfully tested both on electrocardiog-
raphy-gated and real-time 3-D data. It has proven to be fast, accu-
rate, and robust.

Index Terms—Deformable surfaces, four-dimensional statistical
modeling, left ventricle function quantification, three-dimensional
echocardiography.

I. INTRODUCTION

ECHOCARDIOGRAPHY has become a major modality in
the diagnosis of heart diseases due to its innocuousness,

the relatively low cost and small size of equipment compared
to other modalities, and its ability to reveal the anatomy and
to give functional information in real-time. Current exams are
based on the interpretation of a two-dimensional (2-D) image
time series, obtained from standard orientations (between the
ribs or through the esophagus). Today’s commercially avail-
able three-dimensional (3-D) equipment performs the acquisi-
tion of a series of 2-D image sequences at different angular
positions, via small motor-driven rotations of the image plane
over 180 . After image acquisition, a series of 3-D sets over
one cardiac cycle is reconstructed, using the images’ echocar-
diogram (ECG) tags and their angular positions. The whole pro-
cedure typically requires several minutes, which makes it sub-
ject to artifacts caused by heart motion and irregular heartbeat.
Real-time 3-D, which overcomes these limitations, requires the
development of 2-D piezomatrices with embedded electronics
capable of parallel beamforming, which is a difficult techno-
logical challenge. Yet one can expect that this technology will
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become ubiquitous soon. For instance, Philips Medical System
Ultrasound—Andover has recently launched on the market a
real-time 3-D system that does not compromise image quality.

There is no doubt that 3-D increases the benefits of echocar-
diography, in particular in the quantification of the heart func-
tion [1]. A frequent indication for ultrasound examination in
cardiology is the assessment of the left ventricle (LV), which
is affected by coronary artery diseases and a number of car-
diomyopathies. In standard 2-D echocardiography, this quan-
tification is limited to a rather crude volume estimation derived
from one or two images and a coarse model of the LV shape;
clearly more accurate volume measurements can be expected
from 3-D data [2]. Even more interesting are the new possibil-
ities that 3-D opens in the estimation of the location and extent
of ischemic damages, which can be derived from the quantifi-
cation of the kinetics of the LV [3]. Another benefit is the better
reproducibility of 3-D-based quantification, an area where 2-D
echo is at deficit compared to the other modalities.

A prerequisite to the quantification of the LV is the identifi-
cation of the inner border of the LV (also known as the endo-
cardium). Considering the large amount of data per exam pro-
duced by real-time 3-D, manual outlining or other user-guided
2-D based techniques are not compatible with the clinical rou-
tine and have to be discarded. Indeed, a fast and robust segmen-
tation tool with a high degree of automation is required. This is a
challenge because despite the improvements of image quality in
the last few years, like tissue harmonic imaging, ultrasound data
still exhibit some serious adverse characteristics. In particular,
there are large variations of image quality between patients; for
instance, the external wall of the LV is frequently hardly visible
in the images. Also, the spatial resolution is not isotropic and
varies with the position in the data. Among other artifacts, there
is a strong speckle noise superimposed on tissues echoes.

However, there is evidence that incorporating a priori infor-
mation about cardiac anatomy, cardiac physiology, and data ac-
quisition in the segmentation procedure can help a great deal
in reaching a satisfactory level of robustness and speed of ex-
ecution [3]–[5]. The 3-D size and shape characteristics of the
LV, and its deformation over a cardiac cycle, are relatively con-
sistent and can be fairly well characterized by specific models.
Also, the accuracy that is required to properly assess its func-
tion is known, as are the possibilities of the imaging modality.
Lastly, the geometry of data acquisition relative to the heart pro-
vides information about the local data characteristics. In this
paper, we present an approach that takes advantage of this a
priori knowledge.

Fig. 1 shows a flowchart of the successive operations of our
quantification tool.
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Fig. 1. Flowchart of the proposed method.

The user starts by identifying a handset of anatomical land-
marks (three on the mitral valve and one at the apex) in the first
3-D set. These points determine an affine transform that prop-
erly aligns and scales a predetermined normal LV mesh, hence
giving a fairly accurate approximation of the LV shape. Then, it
is deformed using the 3-D active object (3DAO) segmentation
technique, as explained in Section II.

To initialize the operation for the other 3-D datasets (i.e., for
the other time frames) of the cardiac sequence, the classical so-
lution consists in iteratively propagating the result obtained in
the previous set [6]. As the motion of the LV between the succes-
sive 3-D sets can be fairly large, this initialization is inaccurate.

In our approach, we calculate an intial mesh for each 3-D set
of the sequence using a motion model of the normal movement
of the LV over a cardiac cycle, which operates on the result of
the first segmentation. The motion model has been obtained
from tagged MR studies and is described in Section III. It
leads to an accurate initialization, usually very close to the
endocardium. This level of accuracy is important because the
deformation is all the more fast as the required subsequent
deformation is small.

Then, these initial meshes are deformed independently using
the 3DAO segmentation technique, and eventually they match
the LV endocardium in the data series. This independent de-
formation strategy is particularly interesting when dealing with
pathological LV motion.

One advantage of this model-based initialization is that the
cardiac deformation model provides a one-to-one correspon-
dence between the vertices of the meshes that is derived from
biomechanical knowledge. This allows a better estimation of
the wall motion than the sole mesh radial deformation, as is de-
scribed in [7]. The analysis part that covers computation and
display of wall-motion information is presented in Section IV.
The successive steps of the proposed method (see also Fig. 1)
are illustrated with transesophagus 3-D echocardiographic data.

Section V shows results obtained with ECG-gated and
real-time 3-D acquisitions.

II. A CTIVE-OBJECT-BASED SEGMENTATION

To analyze the four-dimensional (4-D) heart motion from ul-
trasonic images, one needs a fast and accurate segmentation
tool. A number of methods for 3-D heart modeling have been
reported in the literature. An excellent review of this topic can
be found in [4]. Among these methods, deformable models have
been successfully applied for medical image segmentation [8],
[9]. Deformable models use either continuous, generally pa-
rametrized, surface representations such as superquadrics [10]
or B-snakes [11] or discrete representations like triangulations
[12], two-simplex meshes [13], or spring-mass models [14]. The
robustness of deformable models can be improved by the inte-
gration of a priori knowledge of the organ of interest using a
statistical shape model [15], [16] or appearance model [17], as
well as image-acquisition specific characteristics.

We have used 3-D deformable models known as two-sim-
plex meshes. Such models are suited to heart modeling because
the heart shape is rather simple, and a small number of vertices
(typically 500) carries enough information on the myocardium’s
shape and position. In the following, we first describe the mesh
geometry, then explain how the mesh is deformed in order to
fit the data. Finally, we discuss the deformation strategy used to
segment the LV in ultrasonic images.

A. Two-Simplex Geometry

A two-simplex mesh (SM) is a discrete closed surface model
where each vertex is linked to three and only three neighbors
(see Fig. 2). The SM-topology is the dual of a triangulation.

SM-geometry is fully described by four parameters at each
vertex: the simplex angle , which characterizes the elevation
of a vertex with respect to the plane defined by its three neigh-
bors; and the barycentric coordinates of the projec-
tion of a vertex onto its neighbor’s plane. The direction normal
to the latter plane defines the local surface’s normal. An in-
ternal energy that is usually related to the mesh smoothness is
derived from the spatial configuration of points. Hence, from
these four parameters, it is possible to assign a contribution of
each vertex to the internal energy of the mesh. More precisely,
for each vertex position, a position where the internal en-
ergy is minimal can be found. The difference betweenand
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Fig. 2. Example of a two-simplex mesh (front and back view). This mesh
approximates an LV and can be used as an initialization for the first segmentation
process.

positions is then considered as an internal force, which is
later used in the iterative evolution (5)

(1)

Different kinds of internal energies have been studied and dis-
cussed in [13]. For LV segmentation, as the heart shape can be
considered as smooth, we have chosen internal forces that min-
imize the local mesh curvature.

The deformation process (segmentation) is preceded by a
mesh initialization step. For the segmentation of the LV, we
usually start from an SM heart model, if available, or simply
from a sphere or an ellipsoid. This first mesh is manually
oriented and positioned into the dataset.

Some basic operations allow one to modify, either locally
or globally, the mesh resolution (i.e., the mean area of the
facets). This includes face splitting (refinement) and merging
(decimation). One original advantage of our implementation is
that the face resolution can be either manually controlled or au-
tomatically adapted during the mesh deformation process. This
method is based on statistical analysis of the mesh resolution
and on its local adaptation to image features.

B. External Forces Computation

For each vertex, we want to find the location that best fits the
image. In practice, vertices are naturally dragged toward regions
where the gradient of the image is high. As a search in 3-D is
time consuming, we restrict the search along the direction of
the vertex normal . Moreover, restricting the influence of the
external forces to the normal direction leads to more reliable
mesh deformations with respect to shape conservation and does
not restrict the class of surface deformation [18]. A rangeon
the normal line controls the extent of the search space for the
external forces calculation (see Fig. 3). For LV segmentation
in ultrasound (US) images, a typical search range value is

mm, but it can be manually set as well, depending on the
quality of the initialization.

We found that for US images, a simple approximation of the
gradient along a line such as the difference step by step of the
voxel intensities greatly speeds up the process without any no-

Fig. 3. Search line and range definition for external forces on a vertex.

ticeable loss of segmentation accuracy. Hence the optimal posi-
tion for a vertex on the search line is the one that satisfies

where (2)

given that the search range interval on the search line is decom-
posed using a Bresenham-like algorithm (like the one used in
[19]) with an index varying in [ 1], and a step vector
collinear to the normal . represents then the intensity
difference in image , and

(3)

With this formulation, we look for a point with the largest in-
crease of intensity (which corresponds to a black object with a
bright boundary, like a heart chamber in echography). For each
vertex, we assign a confidence coefficient ranged in [0, 1].
Depending on the increase of intensity found, this coefficient
is assigned from an S-curve; one corresponds to large intensity
increases, while is close to zero when corresponds to a
location where the intensity difference is too small, i.e., on the
order of the local noise. Moreover, as the inner part of the heart
is dark in the US images, we also eliminate points where the
gray value is too bright, thus preventing the mesh
from going toward the very bright regions of the image. In this
case, the confidence coefficient is set to zero. Even if our
formulation may be sensitive to noise and particularly speckle,
it is very fast since no global 3-D gradient computation is re-
quired, and noise adverse effects are limited by internal force
regularization.

Finally, after the optimal positions have been found, the ex-
ternal force can be expressed as

(4)

C. Deformation Strategy

A typical approach for mesh deformation, and therefore
image segmentation, consists in applying a Newtonian me-
chanical model using (1) and (4) with a damping factor

(5)
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In practice, the mass of the vertices is equal to one, as well
as the time step. This simplification is not restrictive as long as
we allow some scaling of external and internal forces [13]. Thus
a discrete implementation of (5) results in a Lagrangian model

(6)

In a pure local deformation, this Lagrangian evolution equa-
tion can be applied synchronously to all vertices, whereis the
position of a vertex at time, and and are the weighting fac-
tors that control the balance between mesh regularity and data
fitting.

To improve the segmentation robustness and convergence
speed, a coarse-to-fine strategy is implemented in three steps:

1) manual placement of a coarse mesh;
2) mesh deformation with a few degrees of freedom that re-

stricts it to rigid body, similarity, or affine transforms;
3) local deformations.
In step 1), we start with a coarse heart model that is prop-

erly positioned by aligning the mitral valve plane and the apex
defined with four anatomical landmarks). Step 2) consists in
constraining the apparent motion of each vertex with a global
transform ( rigid-body; similarity—translation, rotation, and
isotropic scaling; or affine transform). The parameters of this
transform are derived from the minimization of the mean square
error: . For the LV segmentation, we usu-
ally use similarity and affine transforms. This step is very fast,
and if the approximation looks good enough, the user can reduce
the search rangeand therefore speed up the whole process.

Finally, step 3), which is a free deformation, corresponds
to the evolution (6). This step can also be considered as a
coarse-to-fine algorithm since it gradually increases the mesh
resolution as the deformation is iterated.

As an illustration, Fig. 4 gives an example of the overall de-
formation process, starting simply from a sphere (instead of a
LV shape), showing the intermediary affine transform [step 2)]
and the final results on two orthogonal views.

Real-time interactive tools have also been devised to let the
user correct the result. These tools comprise 3-D mesh dragging
toward a point on a hand-drawn curve, and mesh cutting.

Finally, using adequate external force computations, we
have successfully tested this segmentation technique with other
modalities like magnetic resonance imaging (MRI), computed
tomography scans, and 3-D-rotational angiography.

D. From 3-D to 4-D

As explained above, we use an average LV model to initialize
the mesh prior to the deformation. This initialization is based on
four anatomical landmarks, which are identified in the data by
the user. Repeating this operation in the whole series of 3-D
sets would be time consuming and tedious. Alternately, pro-
vided that one of the data sets has already been segmented, one
could initialize the 3DAO in the next data set with the result of
the segmentation in the previous one. However, the deformation
of the LV between two successive data sets can be quite large;
therefore the simple duplication of the previous result can lie far
from the endocardium. In our approach, we use a 4-D cardiac

(a) (b)

(c) (d)

Fig. 4. Example of the deformation/segmentation process, (a) starting from a
spherical mesh and (b) using an affine fitting. (c) and (d) show two orthogonal
views of the segmentation result.

model that describes the motion of a beating LV over the cardiac
cycle. The model and the data are synchronized with the ECG
information, and at a given sampling time the modeled motion is
applied to the result of the segmentation of one data set, leading
to the desired initialization. The motion model is described in
Section III and illustrated by results obtained with 3-D echocar-
diographic data.

III. MR T AGGING-BASED DEFORMATION MODEL

In this section, we describe how we model the kinetics of
the LV endocardium by a geometric deformation with a small
number of parameters, independent of the variability of the LV
shape.This model has been obtained from tagged MRI datasets,
as described below.

A. MRI Tagging Data

Magnetic resonance tagging has proven its high ability to ac-
quire the cardiac motion. Fisheret al. [20] introduced, in 1993,
a new protocol, known as complementary spatial modulation
of magnetization (CSPAMM), which makes it possible to ac-
quire a complete cardiac cycle with a high and constant con-
trast. Stuberet al. [21] improved it by adding an efficient slice
following technique.

We used this resulting protocol, CSPAMM-SF, on a Philips
Gyroscan 1.5 T. Acquisitions were performed on 12 healthy vol-
unteers (nine males and three females, aged 25–35), scanned in
the same conditions by one operator. The basal slices were po-
sitioned 10 mm below the valves and the apical slices 10 mm
above the radiological apex [22]. The longitudinal slice corre-
sponded to the 2-D four-chamber echocardiographic view.
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Fig. 5. Referential system for the left ventricle.Z is along the long axis, and
XY planes are short axis.

B. Data Processing

In those 2-D slices, the tagging grids and the resulting motion
are extracted with a new fully automatic method [23]–[25]. For
the 3-D motion, in the classical reference system defined by the
“short axis” and “long axis” planes (see Fig. 5), our model can
be decomposed in these two directions.

1) In the short-axis plane, we suppose a contraction/dilation
and a rotation around the barycenter. Their amplitudes de-
pend on . We suppose a linear variation of the model
parameters, between a reference basal slice, where no ro-
tation is supposed,1 and an apical slice.

2) In the long-axis plane, we suppose a homogeneous affine
deformation, which lets the radiological apex still.

Then, the deformation is controlled by four temporal parame-
ters: the apical contraction , the basal contraction , the
longitudinal contraction , and the apical rotation . To
eliminate the variation of the heartbeats between patients, some
temporal resampling is done between end-diastole (ED, )
and end-systole (ES, , characterized by a minimal inner
volume). Because of tag contrast dropout during the sequence
in some cases, the curves are only computed for the first part
of the diastolic relaxation. As the amplitude of the motion also
varies between patients, each curve is normalized by its value
at end-systole, and then the amplitudes and the normalized tem-
poral curves are averaged separately. Figs. 6 and 7 show the four
normalized motion curves of , , , and .

C. Model Application

Let be the -coordinate of the radiological apex, that of
the apical slice, and that of the basal slice. Then, the expres-
sion of the transformation of a vertex at cylindrical coordinates

in the LV referential is

(7)

1Studies show a maximal rotation angle of 3[22], which is negligible for
our application.

Fig. 6. Contraction curves for the mean model.

Fig. 7. Apical rotation (or twist) for the mean model.

This procedure is applied individually to all the mesh ver-
tices, keeping its topology and the one-to-one correspondence
over the cardiac cycle. Note also that this model can be applied
between arbitrary phases of the cardiac cycle. In [26], we show
that, although very compact, this model is quite realistic.

Fig. 8 shows the direct application of the motion model to
the initial mesh, which is the end-diastolic one , already
presented in Fig. 4. This figure clearly shows the usefulness of
the proposed motion model, as the output meshes are close to
the inner wall of the LV.

IV. A NALYSIS TOOLS

As presented in the introduction (and on Fig. 1), the meshes
derived from the motion model are further deformed using the
3DAO procedure of Section II in order to adapt to the image
data.

Fig. 9 presents the final results, based on the meshes resulting
from the motion model presented in Fig. 8. Since the “initial”
meshes are close to the endocardium, the segmentation process
is fast. Note that the 3DAO segmentation procedure is able to
accurately capture the mitral valve plane, although the motion
model overestimated its moving [compare views Fig. 9(a) and
(b) with corresponding views Fig. 8(a) and (b)].

The resulting series of meshes is a discrete representation of
a complex moving organ. One of the key advantages of this rep-
resentation is the ease of computation of quantitative motion pa-
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 8. Application of the motion model for successive timest = 0 (ED),4,8,
and11 (ES). Two orthogonal views (v = 1 andv = 2) are displayed for each
time frame, with the slice of the corresponding mesh surimposed. The reference
frame ist = 8.

rameters. The usual global parameters are the global LV volume
curve during the cardiac cycle, the ejection fraction, and the
stroke. However, the analysis of the local wall motion is also
of paramount importance in the diagnosis, in the followup of
a pathology and of therapy efficiency. With the SM represen-
tation, both the local extent of the contraction (or relaxation)
and its time of occurrence in the cardiac cycle can be accurately
measured. Hence the contraction (or relaxation) abnormalities
can be detected and quantified. This section describes the tools
we have developed to analyze the result of the segmentation of
the 3-D data sets.

The main idea is to quantify wall motion with the following
measurements:

1) deformation:the signed distance in millimeters, pos-
itive if contraction, negative if relaxation (see Fig. 10);

2) strain: 1, positive if contraction, negative if
relaxation;

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 9. Final result, after using the 3DAO procedure on the motion model
result displayed in Fig. 8. Successive timest = 0 (ED), 4; 8; and11 (ES)
are represented, each with two orthogonal views (v = 1 andv = 2) with
the cross-section of the corresponding mesh superimposed.

3) maximum motion time:time corresponding to the largest
motion (either in contraction or relaxation) with respect
to a given reference time;

4) local volume:volume corresponding to the 3-D space be-
tween a bull’s-eye region and the mesh center of gravity.

These computations are done for all the faces of the meshes.
The 3-D distance computation can either be done “blindly,” i.e.,
using each mesh as a separate discrete representation or using
the vertices correspondence introduced by the motion model
(see Section III).

The computations are done with respect to one “reference”
time selected by the user, e.g., the end of diastole to study
the systolic phase. The parameters correspond to the motion
between a given mesh (i.e., the visible one) and the “refer-
ence” mesh. The global translation between the centers of
gravity (CoGs) of both meshes can be compensated for. The
deformation can be computed either radially from the CoGs
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Fig. 10. 2-D view of the deformation computation (as in X-ray ventricu-
lography). PointO is the center of gravity of the “reference” mesh (or of both
meshes; see below).

or perpendicularly to the mesh surface (similar to Bolson and
Sheehan “Centerline” and “CenterSurface” [27]). In practice,
the combination of global translation compensation and CoG
centered deformation leads to the most robust results.

The wall-motion measurements are averaged in each bull’s-
eye region. In the average process, each face is weighted by
its surface. Then these values are converted into colors, using
a color map that can be adjusted by the user, and displayed si-
multaneously on the visible mesh and on the bull’s-eye repre-
sentation [28], as shown in Fig. 15. The definition of the 16 polar
regions of a bull’s-eye view is determined by the four key points
already selected by the user to initialize the SM (see Section II),
plus two points corresponding to the anterior and inferior part
of the insertion of the right ventricle on the left ventricle. These
last two points only define the septal regions of the bull’s eye
and do not need to be accurately localized.

The deformation curves of a selected region over a cardiac
cycle can also be displayed and compared. The contraction wave
propagation can be assessed.

Fig. 15 shows a view of the wall-motion analysis tool.

V. RESULTS

To validate the 3DAO segmentation procedure,in vitro vol-
umetric experiments have been conducted using a beating bal-
loon-in-balloon phantom [6]. This validation shows a volume
measurement error of about 3%, always inferior to the pro-
tocol setup precision (5 ml), and a standard deviation inferior
to 1.2 ml.

The results presented hereafter were obtained by using the
following procedure (also depicted in Fig. 1).

1) For a given dataset, the segmentation process is initialized
using one coarse LV mesh.

2) The 3DAO segmentation is applied (with the possibility
for some user correction).

3) This segmentation is “propagated” to the rest of the se-
quence, using the motion model presented in Section III.

4) The 3DAO procedure is applied independently to each
volume of the sequence under the user control.

Fig. 11. Short-axis view of a 3-D gated-TEE dataset. The motion artifacts are
clearly visible but are smoothed out by the 3DAO procedure.

To precisely capture the endocardium in one or several time
frames, the user may find it necessary to modify the vertex den-
sity of the corresponding meshes. Then, the one-to-one corre-
spondence introduced by the motion model is lost but our anal-
ysis tool (see Section IV) still works in this case.

All of Sections II and III are illustrated with one trans-
esophageal echographic (TEE) datum, acquired using a
ECG-gated mechanical scanhead, with an angular spacing
of 4 . In the following, results obtained with two other TEE
datasets are presented, followed by a recent result with the
new Live 3-D system (Philips Medical System). The presented
results are segmentation images with cross-sections of the
mesh superimposed, because the segmentation is the critical
part, whereas the subsequent quantitative analysis is rather
straightforward.

A. Results on ECG-Gated Data

First, two partial results are shown on another 3-D ECG-gated
transesophageal echocardiography.

The first partial result, in Fig. 11, shows that the 3DAO pro-
cedure (Section II) is not disrupted by the clearly visible ar-
tifacts due to breathing and probe motion during the lengthy
ECG-gated acquisition. These complex movements lead to arti-
facts in the 3-D reconstructed data that are very difficult to cor-
rect. Of course, these artifacts are best visible in reconstructed
planes, i.e., the short-axis views in this example.

The second partial result, as shown in Fig. 12 on the same
dataset, proves the usability of the motion model described in
Section III, even in this very severe case of mitral regurgitation
and LV remodeling.

Fig. 13 displays the segmentation results obtained with
transthoracic data. Like TEE datasets, this dataset has been
acquired using a motor-controlled scanhead, gated on the
ECG. Note that the proposed approach is able to detect the
endocardium on these low-quality data that exhibit severe echo
dropout in the LV free wall part.
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(a) (b)

(c) (d)

Fig. 12. Motion model applied to another TEE ECG-gated acquisition in a
severe case of mitral valve regurgitation, between ED (reference) and ES, with
the cross-section of the corresponding mesh superimposed.

(a) (b)

(c) (d)

Fig. 13. Result on a very low-gain 3-D transthoracic acquisition, between ED
and ES, with the cross-section of the corresponding mesh.

B. Result on Live 3-D Data

Philips Medical System Andover has recently released the
Live 3-D system,2 based on a fully populated matrix array that is
able to acquire 3-D volumes in real time without compromising
the image quality. We present in Fig. 14 preliminary results ob-
tained with this new image-acquisition protocol.3

Note that in the example, the papillary muscles are excluded
from the inner volume of LV, whereas in the current practice,
which relies on the adjustment of a crude model in one or two

2First presented during ASE’01 (Conference of the American Society of
Echography), Seattle, WA, June 2001.

3Data reproduced with permission from Duke University by courtesy of Dr.
J. Kisslo.

(a) (b)

(c) (d)

(e) (f)

Fig. 14. Result on live 3-D dataset. Short-axis view at mid-LV level between
ED and ES.

images, they are usually included in the LV. Although still de-
bated, this choice seems to make more sense for the estimation
of blood volumes. With our method, the papillary muscles could
be included in the segmentation as well by increasing the global
smoothness constraint (the internal forces of the 3 DAO proce-
dure; see Section II). Fig. 12 shows a 3-D view of the segmen-
tation result on this live 3-D data set.

VI. CONCLUSION AND DISCUSSION

In this paper, we present a new and efficient method to quan-
tify the LV function in 3-D echocardiography.

A method addressing the same problem has been recently
proposed in [3], based on the tracking of the local echoes
patterns in the myocardium. However, the results are obtained
with open-chest dog heart data, which provide a level of
image quality that is much better than that usually achieved in
the transthoracic exams. Also the segmentation procedure is
computationally intensive (3–4 h per dog).

Our method is fast: the whole procedure—including user in-
teraction—takes less than 4 min on standard PC hardware. The
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Fig. 15. Snapshot of 3-D analysis with the inferior part of colored mesh and
the bull’s-eye view.

segmentation step is model-driven in two ways. First (see Sec-
tion II), the LV is represented by an active object whose defor-
mations are mostly local. This kind of representation proves to
be very flexible and able to depict a large variety of shapes. Sec-
ondly, we incorporate a global 4-D model (see Section III) that
encompasses the normal motion of a beating LV. The combina-
tion of these local and global deformation approaches leads to
a robust and efficient method that produces clinically pertinent
LV function descriptors and that can cope with the limitations
of ultrasound imaging.

Clinical validation of the volume measurement on ECG-gated
acquisitions is currently under way at Freeman Hospital in New-

Fig. 16. 3-D view of the end-systolic live 3-D dataset with the corresponding
segmentation result.

castle, U.K., using simultaneous Swan–Ganz catheter measure-
ments on patients in an intensive care unit. This validation will
also include comparisons with MRI studies on both the quanti-
tative findings and the images themselves.

Clearly the emergence of real-time 3-D will speed up many
of the clinical validations currently under way, as well as the
deployment of 3-D echography in the clinical routine.

As a future improvement of this tool, we plan to add some
capability of automatic comparison with a normal case, with
reporting of contraction or relaxation problems, along with their
position, extent, and timing.

As we have shown, a local deformation scheme is capable of
capturing pathological cases. Moreover, we believe that adding
a database of motion models may increase the method’s robust-
ness.

Another application we want to address is the 3-D assess-
ment of the viability of the LV muscle in stress echo, which can
be done automatically with much better reproducibility than in
2-D. Similar benefits can be expected in the study of the evolu-
tion of the LV function with time to assess its recovery. Wall-
thickening measurements, which are more difficult because of
the frequently poor definition of the epicardium, can also be ad-
dressed with the detection scheme proposed here, by incorpo-
rating the LV myocardium contraction into the cardiac defor-
mation model. Also, taking benefit of other sources of informa-
tion like tissue Doppler or contrast perfusion is certainly worth
investigating.
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